Journal of Molecular Modeling

, Volume 14, Issue 9, pp 857–870 | Cite as

Molecular motions of human HIV-1 gp120 envelope glycoproteins

Original Paper


The HIV-1 gp120 exterior envelope glycoprotein undergoes a series of conformational rearrangements while sequentially interacting with the receptor CD4 and the coreceptor CCR5 or CXCR4 on the surface of host cells to initiate virus entry. Both the crystal structures of the HIV-1 gp120 core bound by CD4 and antigen 17b, and the SIV gp120 core pre-bound by CD4 are known. Despite the wealth of knowledge on these static snapshots of molecular conformations, the details of molecular motions crucial to intervention remain elusive. We presented a comprehensive comparative analysis of dynamic behavior of gp120 in its CD4-complexed, CD4-free and CD4-unliganded states based on the homology models with modeled V3 and V4 loops. CONCOORD computer simulation was utilized to generate ensembles of feasible protein structures, which were subsequently analyzed by essential dynamics technique to identify preferred concerted motions. The revealed collective fluctuations are dominated by complex motional modes such as rotation/twisting, flexing/closing, and shortness/elongation between or within the inner, outer, and bridging-sheet domains. An attempt has been made to relate these modes to receptor/coreceptor association and neutralization avoidance. Covariance web analysis revealed four subdomains that undergo concerted motion in gp120. The structural components in gp120 that move in concert with CD4 were also identified, which may be the suitable target for inhibitor design to interrupt CD4-gp120 interaction. The differences in B-factors between the three gp120 states revealed certain structural regions that could be related either to CD4 association or to subsequent dissociation of gp120 from gp41. These dynamics data provide new insights into the structure-function relationship of gp120 and may aid in structure-based anti-HIV vaccine design.


B-factor Collective fluctuation Comparative modeling CONCOORD simulation Covariance web Essential dynamics HIV-1 gp120 



Human immunodeficiency virus


Acquired immunodeficiency syndrome


Antigen binding fragment


Simian immunodeficiency virus


Variable loop


Molecular dynamics


Essential Dynamics


Per-atom normalized covariance


Mean square fluctuation


Root mean square deviation




  1. 1.
    Barre-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, Dauguet C, Axler-Blin C, Vezinet-Brun F, Rouzioux C, Rozenbaum W, Montagnier L (1983) Science 220:868–871CrossRefGoogle Scholar
  2. 2.
    Gallo RC, Salahuddin SZ, Popovic M, Shearer GM, Kaplan M, Haynes BF, Palker TJ, Redfield R, Oleske J, Safai B (1984) Science 224:500–503CrossRefGoogle Scholar
  3. 3.
    Heeney JL, Hahn BH (2000) AIDS Suppl 14:125–127Google Scholar
  4. 4.
    Klein E, Ho R (2000) Clin Ther 22:295–314CrossRefGoogle Scholar
  5. 5.
    Dalgleish AG, Beverley PC, Clapham PR, Crawford DH, Greaves MF, Weiss RA (1984) Nature 312:763–767CrossRefGoogle Scholar
  6. 6.
    Feng Y, Broder CC, Kennedy PE, Berger EA (1996) Science 272:872–877CrossRefGoogle Scholar
  7. 7.
    Trkola A, Dragic T, Arthos J, Binley JM, Olson WC, Allaway GP, Cheng-Mayer C, Robinson J, Maddon PJ, Moore JP (1996) Nature 384:184–187CrossRefGoogle Scholar
  8. 8.
    Wu L, Gerard NP, Wyatt R, Choe H, Parolin C, Ruffing N, Borsetti A, Cardoso AA, Desjardin E, Newman W, Gerard C, Sodroski J (1996) Nature 384:179–183CrossRefGoogle Scholar
  9. 9.
    Veronese FD, DeVico AL, Copeland TD, Oroszlan S, Gallo RC, Sarngadharan MG (1985) Science 229:1402–1405CrossRefGoogle Scholar
  10. 10.
    Trkola A, Purtscher M, Muster T, Ballaun C, Buchacher A, Sullivan N, Srinivasan K, Sodroski J, Moore JP, Katinger H (1996) J Virol 70:1100–1108Google Scholar
  11. 11.
    Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA (1998) Nature 393:648–659CrossRefGoogle Scholar
  12. 12.
    Kwong PD, Wyatt R, Majeed S, Robinson J, Sweet RW, Sodroski J, Hendrickson WA (2000) Structure Fold Des 8:1329–1339CrossRefGoogle Scholar
  13. 13.
    Wyatt R, Kwong PD, Desjardins E, Sweet RW, Robinson J, Hendrickson WA (1998) Nature 393:705–711CrossRefGoogle Scholar
  14. 14.
    Chen B, Vogan EM, Gong H, Skehel JJ, Wiley DC, Harrison SC (2005) Nature 433:834–841CrossRefGoogle Scholar
  15. 15.
    Kwong PD, Doyle ML, Casper DJ, Cicala C, Leavitt SA, Majeed S, Steenbeke TD, Venturi M, Chaiken I, Fung M, Katinger H, Parren PW, Robinson J, Van Ryk D, Wang L, Burton DR, Freire E, Wyatt R, Sodroski J, Hendrickson WA, Arthos J (2002) Nature 420:678–682CrossRefGoogle Scholar
  16. 16.
    Myszka DG, Sweet RW, Hensley P, Brigham-Burke M, Kwong PD, Hendrickson WA, Wyatt R, Sodroski J, Doyle ML (2000) Proc Natl Acad Sci USA 97:9026–9031CrossRefGoogle Scholar
  17. 17.
    Berendsen HJ, Hayward S (2000) Curr Opin Struct Biol 10:165–169CrossRefGoogle Scholar
  18. 18.
    Hsu ST, Bonvin AM (2004) Proteins 55:582–593CrossRefGoogle Scholar
  19. 19.
    Pan Y, Ma B, Nussinov R (2005) J Mol Biol 350:514–527CrossRefGoogle Scholar
  20. 20.
    Pan Y, Ma B, Keskin O, Nussinov R (2004) J Biol Chem 279:30523–30530CrossRefGoogle Scholar
  21. 21.
    de Groot BL, van Aalten DMF, Scheek RM, Amadei A, Vriend G, Berendsen HJ (1997) Proteins 29:240–251CrossRefGoogle Scholar
  22. 22.
    Barrett CP, Noble ME (2005) J Biol Chem 280:13993–14005CrossRefGoogle Scholar
  23. 23.
    Barrett CP, Hall BA, Noble ME (2004) Acta Crystallogr D Biol Crystallogr 60:2280–2287CrossRefGoogle Scholar
  24. 24.
    Mello LV, De Groot BL, Li S (2002) J Biol Chem 277:36678–36688CrossRefGoogle Scholar
  25. 25.
    Vreede J, van der Horst MA, Hellingwerf KJ, Crielaard W, van Aalten DM (2003) J Biol Chem 278:18434–18439CrossRefGoogle Scholar
  26. 26.
    Bairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O’Donovan C, Redaschi N, Yeh LS (2005) Nucl Acids Res 33:D154–D159 (Database issue)CrossRefGoogle Scholar
  27. 27.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucl Acids Res 28:235–242CrossRefGoogle Scholar
  28. 28.
    Vranken WF, Budesinsky M, Fant F, Boulez K, Borremans FA (1995) FEBS Lett 374:117–121CrossRefGoogle Scholar
  29. 29.
    Baker D, Sali A (2001) Science 294:93–96CrossRefGoogle Scholar
  30. 30.
    Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38, 27–28CrossRefGoogle Scholar
  31. 31.
    Sali A, Blundell TL (1993) J Mol Biol 234:779–815CrossRefGoogle Scholar
  32. 32.
    Kabsch W, Sander C (1983) Biopolymers 22:2577–2637CrossRefGoogle Scholar
  33. 33.
    Amadei A, Linssen ABM, Berendsen HJC (1993) Proteins 17:412–425CrossRefGoogle Scholar
  34. 34.
    Levy R, Srinivasan A, Olson W, MsCammon J (1984) Biopolymers 23:1099–1112CrossRefGoogle Scholar
  35. 35.
    Garcia AE (1992) Phys Rev Lett 68:2696–2699CrossRefGoogle Scholar
  36. 36.
    Hayward S, Go N (1995) Annu Rev Phys Chem 46:223–250CrossRefGoogle Scholar
  37. 37.
    Berendsen HJC, Van Der Spoel D, Van Drunen R (1995) Comp Phys Comm 91:43–56CrossRefGoogle Scholar
  38. 38.
    Lindahl E, Hess B, Van Der Spoel D (2001) J Mol Mod 7:306–317Google Scholar
  39. 39.
    Van Aalten DMF, Findlay JBC, Amadei A, Berendsen HJC (1995) Prot Eng 8:1129–1136CrossRefGoogle Scholar
  40. 40.
    Van Aalten DMF, de Groot BL, Berendsen HJC, Findlay JBC, Amadei A (1997) J Comp Chem 18:169–181CrossRefGoogle Scholar
  41. 41.
    Faraldo-Gómez JD, Forrest LR, Baaden M, Bond PJ, Domene C, Patargias G, Cuthbertson J, Sansom MSP (2004) Proteins 57:783–791CrossRefGoogle Scholar
  42. 42.
    McCammon JA, Harvey S (1987) Dynamics of proteins and nucleic acids. Cambridge University Press, CambridgeGoogle Scholar
  43. 43.
    Huang CC, Tang M, Zhang MY, Majeed S, Montabana E, Stanfield RL, Dimitrov DS, Korber B, Sodroski J, Wilson IA, Wyatt R, Kwong PD (2005) Science 310:1025–1028CrossRefGoogle Scholar
  44. 44.
    Hunenberger PH, Mark AE, van Gunsteren WF (1995) J Mol Biol 252:492–503CrossRefGoogle Scholar
  45. 45.
    Laskowski RA, MacArthur M, Moss DS, Thornton JM (1993) J Appl Crystallogr 26:283–291CrossRefGoogle Scholar
  46. 46.
    de Groot BL, Hayward S, van Aalten DMF, Amadei A, Berendsen HJC (1998) Proteins 31:116–127CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Laboratory for Conservation and Utilization of Bio-resourcesYunnan UniversityKunmingPeople’s Republic of China
  2. 2.School of Chemical Science and TechnologyYunnan UniversityKunmingPeople’s Republic of China
  3. 3.Human Genetics CenterThe University of Texas Helth Science CenterHoustonUSA

Personalised recommendations