Skip to main content
Log in

Optimization of cutting schemes for the evaluation of molecular electrostatic potentials in proteins via Moving-Domain QM/MM

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

This work presents new developments of the moving-domain QM/MM (MoD-QM/MM) method for modeling protein electrostatic potentials. The underlying goal of the method is to map the electronic density of a specific protein configuration into a point-charge distribution. Important modifications of the general strategy of the MoD-QM/MM method involve new partitioning and fitting schemes and the incorporation of dynamic effects via a single-step free energy perturbation approach (FEP). Selection of moderately sized QM domains partitioned between \(C_\alpha \) and C (from C=O), with incorporation of delocalization of electrons over neighboring domains, results in a marked improvement of the calculated molecular electrostatic potential (MEP). More importantly, we show that the evaluation of the electrostatic potential can be carried out on a dynamic framework by evaluating the free energy difference between a non-polarized MEP and a polarized MEP. A simplified form of the potassium ion channel protein Gramicidin-A from Bacillus brevis is used as the model system for the calculation of MEP.

Schematic representation of the Moving Domain QM/MM method

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Warshel A, Sharma PK, Kato M, Parson WW (2006) Biochim Biophys Acta 1764:1647–1676

    CAS  Google Scholar 

  2. Warshel A (1981) Acc Chem Res 14:284–290

    Article  CAS  Google Scholar 

  3. Sharp KA, Honig B (1990) Annu Rev Biophys Biophys Chem 19:301–332

    Article  CAS  Google Scholar 

  4. Warshel A, Sharma PK, Kato M, Xiang Y, Liu HB, Olsson MHM (2006) Chem Rev 106:3210–3235

    Article  CAS  Google Scholar 

  5. Warshel A (1998) J Biol Chem 273:27035–27038

    Article  CAS  Google Scholar 

  6. Roca M, Marti S, Andres J, Moliner V, Tunon M, Bertran J, Williams AH (2003) J Am Chem Soc 125:7726–7737

    Article  CAS  Google Scholar 

  7. Sheinerman FB, Norel R, Honig B (2000) Curr Opin Struct Biol 10:153–159

    Article  CAS  Google Scholar 

  8. Norel R, Sheinerman F, Petrey D, Honig B (2001) Protein Sci 10:2147–2161

    Article  CAS  Google Scholar 

  9. Lee LP, Tidor B (2001) Nat Struct Biol 8:73–76

    Article  CAS  Google Scholar 

  10. Roux B, MacKinnon R (1999) Science 285:100–102

    Article  CAS  Google Scholar 

  11. Allen TW, Andersen OS, Roux B (2004) Proc Natl Acad Sci USA 101:117–122

    Article  CAS  Google Scholar 

  12. Bastug T, Kuyucak S (2007) J Chem Phys 126:105103–105104

    Article  Google Scholar 

  13. Jorgensen WL, Maxwell DS, TiradoRives J (1996) J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  14. Kaminski G, Duffy EM, Matsui T, Jorgensen WL (1994) J Phys Chem 98:13077–13082

    Article  CAS  Google Scholar 

  15. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  16. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  17. Halgren TA (1999) J Comput Chem 20:730–748

    Article  CAS  Google Scholar 

  18. Scott WRP, Hunenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Kruger P, van Gunsteren WF (1999) J Phys Chem A 103:3596–3607

    Article  CAS  Google Scholar 

  19. Halgren TA, Damm W (2001) Curr Opin Struct Biol 11:236–242

    Article  CAS  Google Scholar 

  20. Patel S, Brooks CL (2006) Mol Simul 32:231–249

    Article  CAS  Google Scholar 

  21. Kaminski GA, Stern HA, Berne BJ, Friesner RA, Cao YX, Murphy RB, Zhou R, Halgren TA (2002) J Comput Chem 23:1515–1531

    Article  CAS  Google Scholar 

  22. Maple JR, Cao Y, Damm W, Halgren TA, Kaminski GA, Zhang LY, Friesner RA (2005) J Chem Theor Comput 1:694–715

    Article  CAS  Google Scholar 

  23. Piquemal JP, Williams-Hubbard B, Fey N, Deeth RJ, Gresh N, Giessner-Prettre C (2003) J Comput Chem 24:1963–1970

    Article  CAS  Google Scholar 

  24. Stern HA, Kaminski GA, Banks JL, Zhou R, Berne BJ, Friesner RA (1999) J Phys Chem B 103:4730–4737

    Article  CAS  Google Scholar 

  25. Yu H, Hansson T, Gunsteren WFv (2003) J Chem Phys 118:221–234

    Article  CAS  Google Scholar 

  26. Ren PY, Ponder JW (2002) J Comput Chem 23:1497–1506

    Article  CAS  Google Scholar 

  27. Ren P, Ponder JW (2003) J Phys Chem B 107:5933–5947

    Article  CAS  Google Scholar 

  28. Stewart JJP (1996) Int J Quantum Chem 58:133–146

    Article  CAS  Google Scholar 

  29. York DM, Lee TS, Yang WT (2005) J Am Chem Soc 127:7215–7226

    Article  Google Scholar 

  30. Gogonea V, Suarez D, van der Vaart A, Merz KW (2001) Curr Opin Struct Biol 11:217–223

    Article  CAS  Google Scholar 

  31. Van der Vaart A, Gogonea V, Dixon SL, Merz KM (2000) J Comput Chem 21:1494–1504

    Article  Google Scholar 

  32. Elstner M, Frauenheim T, Suhai S (2003) J Mol Struct THEOCHEM 632:29–41

    Article  CAS  Google Scholar 

  33. Mohle K, Hofmann HJ, Thiel W (2001) J Comput Chem 22:509–520

    Article  CAS  Google Scholar 

  34. Titmuss SJ, Cummins PL, Bliznyuk AA, Rendell AP, Gready JE (2000) Chem Phys Lett 320:169–176

    Article  CAS  Google Scholar 

  35. Zuegg J, Bliznyuk AA, Gready JE (2003) Mol Phys 101:2437–2450

    Article  CAS  Google Scholar 

  36. Gascon JA, Leung SSF, Batista ER, Batista VS (2006) J Chem Theor Comput 2:175–186

    Article  CAS  Google Scholar 

  37. Maseras M, Morokuma K (1995) J Comput Chem 16:1170–1179

    Article  CAS  Google Scholar 

  38. Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996) J Phys Chem 100:19357–19363

    Article  CAS  Google Scholar 

  39. Vreven T, Morokuma K (2000) J Comput Chem 16:1419–1432

    Article  Google Scholar 

  40. Gao JL (1997) J Phys Chem B 101:657–663

    Article  CAS  Google Scholar 

  41. Gao JL (1998) J Chem Phys 109:2346–2354

    Article  CAS  Google Scholar 

  42. Wierzchowski SJ, Kofke DA, Gao JL (2003) J Chem Phys 119:7365–7371

    Article  CAS  Google Scholar 

  43. Bakowies D, Thiel W (1996) J Phys Chem 100:10580–10594

    Article  CAS  Google Scholar 

  44. Ketchem RR, Roux B, Cross TA (1997) Structure 5:1655–1669

    Article  CAS  Google Scholar 

  45. Townsley LE, Tucker WA, Sham S, Hinton JF (2001) Biochemistry 40:11676–11686

    Article  CAS  Google Scholar 

  46. Bastug T, Kuyucak S (2006) Chem Phys Lett 424:82–85

    Article  CAS  Google Scholar 

  47. Politzer P, Murray JS, Lane P (2007) Int J Quantum Chem 107:3046–3052

    Article  CAS  Google Scholar 

  48. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgonery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian Inc., Wallingford CT

    Google Scholar 

  49. Lin H, Truhlar D (2007) Theor Chem Acc 117:185–199

    Article  CAS  Google Scholar 

  50. Singh UC, Kollmann PA (1986) J Comput Chem 7:718–729

    Article  CAS  Google Scholar 

  51. Antes I, Thiel W (1998) On the treatment of link atoms in hybrid methods. In: Gao J, Thompson MA (Eds.) Hybrid Quantum Mechanical and Molecular Mechanical Methods Proc. ACS Symp Ser, Washington DC, 1998, Am Chem Soc 712:50–65

  52. Sinclair PE, de Vries A, Sherwood P, Catlow CRA, van Santen RA (1998) J Chem Soc Faraday Trans 94:3401–3408

    Article  CAS  Google Scholar 

  53. Das D, Eurenius KP, Billings EM, Sherwood P, Chatfield DC, Hodoscek M, Brooks BR (2002) J Chem Phys 117:10534–10547

    Article  CAS  Google Scholar 

  54. Amara P, Field MJ (2003) Theor Chem Acc 109:43–52

    CAS  Google Scholar 

  55. Lin H, Truhlar DG (2005) J Phys Chem A 109:3991–4004

    Article  CAS  Google Scholar 

  56. Ferre N, Olivucci M (2003) J Mol Struct Theochem 632:71–82

    Article  CAS  Google Scholar 

  57. Jorgensen WL (1989) Acc Chem Res 22:184–189

    Article  CAS  Google Scholar 

  58. Bentzien J, Muller RP, Florian J, Warshel A (1998) J Phys Chem B 102:2293–2301

    Article  CAS  Google Scholar 

  59. Zhang YK, Liu HY, Yang WT (2000) J Chem Phys 112:3483–3492

    Article  CAS  Google Scholar 

  60. Rod TH, Ryde U (2005) J Chem Theor Comput 1:1240–1251

    Article  CAS  Google Scholar 

  61. Rod TH, Ryde U (2005) Phys Rev Lett 94:138302–138305

    Article  Google Scholar 

  62. Rosta E, Klahn M, Warshel A (2006) J Phys Chem B 110:2934–2941

    Article  CAS  Google Scholar 

  63. Strajbl M, Florian J, Warshel A (2000) J Am Chem Soc 122:5354–5366

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.A.G acknowledges financial support from the Camille and Henry Dreyfus New Faculty Award, start-up package funds from University of Connecticut, and supercomputer time from the National Energy Research Scientific Computing (NERSC) Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Gascón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menikarachchi, L.C., Gascón, J.A. Optimization of cutting schemes for the evaluation of molecular electrostatic potentials in proteins via Moving-Domain QM/MM. J Mol Model 14, 1–9 (2008). https://doi.org/10.1007/s00894-008-0306-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0306-z

Keywords

Navigation