Skip to main content
Log in

Two C-terminal ankyrin repeats form the minimal stable unit of the ankyrin repeat protein p18INK4c

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Ankyrin repeat proteins (ARPs) appear to be abundant in organisms from all phyla, and play critical regulatory roles, mediating specific interactions with target biomolecules and thus ordering the sequence of events in diverse cellular processes. ARPs possess a non-globular scaffold consisting of repeating motifs named ankyrin (ANK) repeats, which stack on each other. The modular architecture of ARPs provides a new paradigm for understanding protein stability and folding mechanisms. In the present study, the stability of various C-terminal fragments of the ARP p18INK4c was investigated by all-atomic 450 ns molecular dynamics (MD) simulations in explicit water solvent. Only motifs with at least two ANK repeats made stable systems in the available timescale. All smaller fragments were unstable, readily losing their native fold and α-helical content. Since each non-terminal ANK repeat has two hydrophobic sides, we may hypothesize that at least one hydrophobic side must be fully covered and shielded from the water as a necessary, but not sufficient, condition to maintain ANK repeat stability. Consequently, at least two ANK repeats are required to make a stable ARP.

Structure of the p18INK4c protein (PDB entry 1IHB, chain B), which is a member of the cyclin-dependent kinase inhibitor (INK) tumor suppressor family with five ankyrin (ANK) repeat modules. The figure was generated by PyMol http://pymol.sourceforge.net/

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sedgwick SG, Smerdon SJ (1999) Trends Biochem Sci 24:311–316

    Article  CAS  Google Scholar 

  2. Mohler PJ, Gramolini AO, Bennett V (2002) J Cell Sci 115:1565–1566

    CAS  Google Scholar 

  3. Serrano M, Hannon GJ, Beach D (1993) Nature 366:704–707

    Article  CAS  Google Scholar 

  4. Mosavi LK, Williams S, Peng ZY (2002) J Mol Biol 320:165–170

    Article  CAS  Google Scholar 

  5. Walker RG, Willingham AT, Zuker CS (2000) Science 287:2229–2234

    Article  CAS  Google Scholar 

  6. Michaely P, Bennett V (1993) J Biol Chem 268:22703–22709

    CAS  Google Scholar 

  7. Zhang B, Peng ZY (2000) J Mol Biol 299:1121–1132

    Article  CAS  Google Scholar 

  8. Mosavi LK, Minor DL, Peng ZY (2002) Proc Nat Acad Sci USA 99:16029–16034

    Article  CAS  Google Scholar 

  9. Tripp KW, Barrick D (2007) J Mol Biol 365:1187–1200

    Article  CAS  Google Scholar 

  10. Ferreiro DU, Cervantes CF, Truhlar SME, Cho SS, Wolynes PG, Komives EA (2007) J Mol Biol 365:1201–1216

    Article  CAS  Google Scholar 

  11. Binz HK, Kohl A, Pluckthun A, Grutter MG (2006) Proteins: Struct Funct Bioinf 65:280–284

    Article  CAS  Google Scholar 

  12. Binz HK, Amstutz P, Kohl A, Stumpp MT, Briand C, Forrer P, Grutter MG, Pluckthun A (2004) Nat Biotechnol 22:575–582

    Article  CAS  Google Scholar 

  13. Binz HK, Stumpp MT, Forrer P, Amstutz P, Pluckthun A (2003) J Mol Biol 332:489–503

    Article  CAS  Google Scholar 

  14. Devi VS, Binz HK, Stumpp MT, Pluckthun A, Bosshard HR, Jelesarov I (2004) Protein Sci 13:2864–2870

    Article  CAS  Google Scholar 

  15. Zahnd C, Wyler E, Schwenk JM, Steiner D, Lawrence MC, McKern NM, Pecorari F, Ward CW, Joos TO, Pluckthun A (2007) J Mol Biol 369:1015–1028

    Article  CAS  Google Scholar 

  16. Kohl A, Binz HK, Forrer P, Stumpp MT, Pluckthun A, Grutter MG (2003) Proc Nat Acad Sci USA 100:1700–1705

    Article  CAS  Google Scholar 

  17. Mosavi LK, Peng ZY (2003) Protein Eng 16:739–745

    Article  CAS  Google Scholar 

  18. Main ERG, Lowe AR, Mochrie SGJ, Jackson SE, Regan L (2005) Curr Opin Struct Biol 15:464–471

    Article  CAS  Google Scholar 

  19. Ferreiro DU, Cho SS, Komives EA, Wolynes PG (2005) J Mol Biol 354:679–692

    Article  CAS  Google Scholar 

  20. Venkataramani R, Swaminathan K, Marmorstein R (1998) Nat Struct Biol 5:74–81

    Article  CAS  Google Scholar 

  21. Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE, Debolt S, Ferguson D, Seibel G, Kollman P (1995) Comput Phys Commun 91:1–41

    Article  CAS  Google Scholar 

  22. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  23. Wang JM, Cieplak P, Kollman PA (2000) J Comput Chem 21:1049–1074

    Article  CAS  Google Scholar 

  24. Bartova I, Otyepka M, Kriz Z, Koca J (2004) Protein Sci 13:1449–1457

    Article  CAS  Google Scholar 

  25. Otyepka M, Bartova I, Kriz Z, Koca J (2006) J Biol Chem 281:7271–7281

    Article  CAS  Google Scholar 

  26. Bartova I, Otyepka M, Kriz Z, Koca J (2005) Protein Sci 14:445–451

    Article  CAS  Google Scholar 

  27. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  28. Kabsch W, Sander C (1983) Biopolymers 22:2577–2637

    Article  CAS  Google Scholar 

  29. Du DG, Gai F (2006) Biochemistry 45:13131–13139

    Article  CAS  Google Scholar 

  30. DeLano WL (2002) DeLano Scientific. http://pymol.sourceforge.net/

Download references

Acknowledgments

Support through the MSMT (Ministry of Youths, Sports and Education, Czech Republic) grants LC512 and MSM6198959216 is gratefully acknowledged. We thank Sees-Editing, Ltd., (UK) for language revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Otyepka.

Electronic supplementary material

The supplementary material contains the time evolution charts of RMSD, R g, percentage of saved native contacts and α-helical content for all studied fragments.

ESM 1

(PDF 402 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sklenovský, P., Banáš, P. & Otyepka, M. Two C-terminal ankyrin repeats form the minimal stable unit of the ankyrin repeat protein p18INK4c . J Mol Model 14, 747–759 (2008). https://doi.org/10.1007/s00894-008-0300-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0300-5

Keywords

Navigation