Skip to main content
Log in

Comparing the electronic properties and docking calculations of heme derivatives on CYP2B4

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Cytochrome P-450 is a group of enzymes involved in the biotransformation of many substances, including drugs. These enzymes possess a heme group (1) that when it is properly modified induces several important physicochemical changes that affect their enzymatic activity. In this work, the five structurally modified heme derivatives 2–6 and the native heme 1 were docked on CYP2B4, (an isoform of P450), in order to determine whether such modifications alter their binding form and binding affinity for CYP2B4 apoprotein. In addition, docking calculations were used to evaluate the affinity of CYP2B4 apoprotein-heme complexes for aniline (A) and N-methyl-aniline (NMA). Results showing the CYP2B4 heme 4- and heme 6-apoprotein complexes to be most energetically stable indicate that either hindrance effects or electronic properties are the most important factors with respect to the binding of heme derivatives at the heme-binding site. Furthermore, although all heme-apoprotein complexes demonstrated high affinity for both A and NMA, the CYP2B4 apoprotein-5 complex had higher affinity for A, and the heme 6 complex had higher affinity for NMA. Finally, surface electronic properties (SEP) were calculated in order to explain why certain arginine residues of CYP2B4 apoprotein interact with polarizable functionalities, such as ester groups or sp 2 carbons, present in some heme derivates. The main physicochemical parameter involved in the recognition process of the heme derivatives, the CYP2B4 apoprotein and A or NMA, are reported.

Scheme of steps to be followed for obtaining five new CYP2B4 apoprotein-heme complexes by docking

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fleming BD, Johnson DL, Bond AM, Martin LL (2006) Expert Opin Drug Metab Toxicol 2:581–589

    Article  CAS  Google Scholar 

  2. Lamb DC, Kim Y, Yermalitskaya LV, Yermalitsky VN, Lepesheva GI, Kelly SL, Waterman MR, Podust LM (2006) Structure 14:51–61

    Article  CAS  Google Scholar 

  3. Hlavica P, Lehnerer M, Eulitz M (1996) Biochem J 318:857–862

    CAS  Google Scholar 

  4. Gutierrez A, Grunau M, Paine AW, Munro CR, Wolf GC, Roberts NS (2003) Biochem Soc Trans 31:497–501

    Article  CAS  Google Scholar 

  5. Zhao X, Yeung N, Wang Z, Guo Z, Lu Y (2005) Biochem J 44:1210–1214

    Article  CAS  Google Scholar 

  6. Uchida T, Ishimori K, Morishima I (1997) J Biol Chem 272:30108–30114

    Article  CAS  Google Scholar 

  7. Aschi M, Zazza C, Spezia R, Bossa C, Di Nola A, Paci M, Amadei A (2004) J Comput Chem 25:974–984

    Article  CAS  Google Scholar 

  8. Galstyan AS, Zaric SD, Knapp EW (2005) J Biol Inorg Chem 10:343–354

    Article  CAS  Google Scholar 

  9. Mie Y, Yamada C, Hareau GP, Neya S, Uno T, Funasaki N, Nishiyama K, Taniguchi I (2004) Biochem J 43:13149–13155

    Article  CAS  Google Scholar 

  10. Torres E, Baeza A, Vazquez-Duhalt R (2002) J Mol Catal B: Enzymatic 19–20:437–441

    Article  Google Scholar 

  11. Sono M, Asakura T (1996) J Biol Chem 251:2664–2670

    Google Scholar 

  12. Rosales-Hernández M, Kispert L, Torres-Ramírez E, Ramírez-Rosales D, Zamorano- Ulloa R, Trujillo-Ferrara J (2007) Biotechnol Lett 29:919–924

    Article  Google Scholar 

  13. Cheng D, Reed JR, Harris D, Backes WL (2007) Arch Biochem Biophys 462:28–37

    Article  CAS  Google Scholar 

  14. Zhao Y, Halpert JR (2007) Biochem Biophys Acta 1770:402–412

    CAS  Google Scholar 

  15. Rosales-Hernández MC, Correa-Basurto J, Flores-Sandoval C, Marín-Cruz J, Torres E, Trujillo-Ferrara J (2007) J Mol Struct THEOCHEM 804:81–88

    Article  Google Scholar 

  16. Lee K-B, Jun E, La Mar GN, Rezzano IN, Pandey RK, Smith KM, Walker FA, Buttlaire DH (1991) J Am Chem Soc 113:3576–3583

    Article  CAS  Google Scholar 

  17. Tsukahara K, Okazawa T, Takahashi H, Yamamoto Y (1986) Inorg Chem 25:4756–4760

    Article  CAS  Google Scholar 

  18. Singh UP, Obayashi E, Takahshi S, Lizuka T, Shoun H, Shiro Y (1998) Biochem Biophys Acta 1384:103–111

    CAS  Google Scholar 

  19. Hudecek J, Hodek P, Anzenbacherova E, Anzenbacher P (2007) BBA-General Subjects 1770:413–419

    Article  CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Peterson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, Revision A.9. Gaussian Inc, Pittsburgh PA

    Google Scholar 

  21. Frankcombe KE, Cavell KJ, Yates BF, Knott RB (1995) J Phys Chem 99:14316–14322

    Article  CAS  Google Scholar 

  22. Zhao Y, White MA, Muralidhara BK, Sun L, Halpert JR, Stout CD (2005) J Biol Chem 281:5973–5981

    Article  Google Scholar 

  23. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comp Chem 19:1639–1662

    Article  CAS  Google Scholar 

  24. Goodford PJ (1985) J Med Chem 28:849–857

    Article  CAS  Google Scholar 

  25. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  26. Cios KJ, Mamitsuka H, Nagashima T, Tadeusiewicz R (2005) Artif Intell Med 35:1–8

    Article  Google Scholar 

  27. Correa-Basurto J, Flores-Sandoval C, Marín-Cruz J, Rojo-Domínguez A, Espinoza- Fonseca LM, Trujillo-Ferrara JG (2007) Eur J Med Chem 42:10–19

    Article  CAS  Google Scholar 

  28. Knops-Gerrits PP, Jacobs PA, Fukuoka A, Ichikawa M, Faglioni F, Goddard WA (2001) J Mol Catal A: Chemical 166:3–13

    Article  CAS  Google Scholar 

  29. Sivozhelezov V, Pechkova E, Nicolini C (2006) J Theoretical Biol 241:73–80

    Article  CAS  Google Scholar 

  30. Stjernschantz E, Marelius J, Medina C, Jacobsson M, Vermeulen NPE, Oostenbrink C (2006) J Chem Inf Model 46:1972–1983

    Article  CAS  Google Scholar 

  31. De Groot MJ, Kirton SB, Sutcliffe MJ (2004) Curr Top Med Chem 4:1803–1824

    Article  Google Scholar 

  32. Vahedi-Faridi A, Brault PA, Shah P, Kim YW, Dunham WR, Funk MO (2004) J Am Chem Soc 126:2006–2015

    Article  CAS  Google Scholar 

  33. Pearce RE, Leeder JS, Kearns GL (2006) Drug Metab Dispos 34:1035–1040

    CAS  Google Scholar 

  34. Arnold F, Weigend F (2007) J Chem Physics 126:174101–174115

    Article  CAS  Google Scholar 

  35. Ferro N, Tacoronte JE, Reinard T, Bultinck P, Montero LA (2006) J Mol Struct THEOCHEM 758:263–274

    Article  CAS  Google Scholar 

  36. Zhu Y, Silverman RB (2007) J Org Chem 72:233–239

    Article  CAS  Google Scholar 

  37. Zhang Y, Yao P, Cai X, Xu H, Zhang X, Jiang J (2007) J Mol Graph Model 26:319–326

    Article  CAS  Google Scholar 

  38. Lill MA, Dobler M, Vedani A (2006) Chem Med Chem 1:73–81

    CAS  Google Scholar 

  39. Pichierri F (2004) Biophys Chem 109:295–304

    Article  CAS  Google Scholar 

  40. Trogdon G, Murray JS, Concha MC, Politzer P (2007) J Mol Model 13:313–318

    Article  CAS  Google Scholar 

  41. De Visser SP (2006) J Am Chem Soc 128:15809–15818

    Article  Google Scholar 

  42. Hlavica P (1972) Biochem Biophys Acta 273:318–327

    CAS  Google Scholar 

  43. Flores-Sandoval CA, Zaragoza IP, Maranon-Ruiz VF, Correa-Basurto J, Trujillo-Ferrara J (2005) J Mol Struct THEOCHEM 713:127–134

    Article  CAS  Google Scholar 

  44. Wojciechowski PM, Zierkiewicz W, Michalska D, Hobza P (2003) J Chem Physics 118:10900–10911

    Article  CAS  Google Scholar 

  45. Muralidhara BK, Negi S, Chin CC, Braun W, Halpert JR (2006) J Biol Chem 281:8051–8061

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CONACYT (62488) and SIP-COFAA/IPN (20070140) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Correa-Basurto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendieta-Wejebe, J.E., Rosales-Hernández, M.C., Rios, H. et al. Comparing the electronic properties and docking calculations of heme derivatives on CYP2B4. J Mol Model 14, 537–545 (2008). https://doi.org/10.1007/s00894-008-0294-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0294-z

Keywords

Navigation