Skip to main content
Log in

The mechanism and kinetics of decomposition of 5-aminotetrazole

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The pathway and ab initio direct kinetics of the decomposition 5-aminotetrazole (5-ATZ) to HN3 and NH2CN was investigated. Reactant, products and transition state were optimized with MP2 and B3LYP methods using 6–311G** and aug-cc-pVDZ basis sets. The intrinsic reaction coordinate curve of the reaction was calculated using the MP2 method with 6–311G** basis set. The energies were refined using CCSD(T)/6–311G**. Rate constants were evaluated by conventional transition-state theory (CVT) and canonical variational transition-state theory (TST), with tunneling effect over 300 to 2,500 K. The results indicated that the tunneling effect and the variational effect are small for the calculated rate constants. The fitted three-parameter expression calculated using the CVT and TST methods are \({\text{k}}\left( {\text{T}} \right) = 4.07 \times 10^{11} \times {\text{T}}^{0.84} \times {\text{e}}^{\left( {{{ - 2.42 \times 10^4 } \mathord{\left/ {\vphantom {{ - 2.42 \times 10^4 } {\text{T}}}} \right. \kern-\nulldelimiterspace} {\text{T}}}} \right)} {\text{s}}^{ - 1} \) and \({\text{k}}\left( {\text{T}} \right) = 2.09 \times 10^{11} \times {\text{T}}^{0.89} \times {\text{e}}^{\left( {{{ - 2.36 \times 10^4 } \mathord{\left/ {\vphantom {{ - 2.36 \times 10^4 } T}} \right. \kern-\nulldelimiterspace} T}} \right)} {\text{s}}^{ - 1} \) , respectively.

The mechanism of the decomposition process of 5-ATZ to HN3 and NH2CN

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Levchik SV, Balabanovich AI, Ivashkevich OA, Gaponik PN, Costa L (1995) Polym Degrad Stability 47:333–338

    Article  CAS  Google Scholar 

  2. Lesnikovich II, Sviridov VV, Printsev GV, Ivashkevich OA, Gaponik PN (1986) Nature 323:706–707

    Article  CAS  Google Scholar 

  3. Katritzky AR, Rogovoy BV, Kovalenko KV (2003) J Org Chem 68:4941–4943

    Article  CAS  Google Scholar 

  4. Baglini JL, Helmy AK, Stang PL, Dunkerson DE, Wright JH (2004) WO2004080921-A2

  5. Mendenhall IV, Taylor RD (2006) US Patent 2006289096-A1

  6. Taylor RD, Mendenhall IV (2006) WO2006047085-A2

  7. Lund GK, Blau RJ (1996) US Patent 5,500,059

  8. Ramaswamy CP, Grzelczyk C (1997) US Patent 5,661,261

  9. Thiele J (1892) Liebigs Ann 270:54–63

    Google Scholar 

  10. Himo F, Demko ZP, Noodleman L, Sharpless KB (2003) J Am Chem Soc 125:9983–9987

    Article  CAS  Google Scholar 

  11. Brill TB, Ramanathan H (2000) Combust Flame 122:165–171

    Article  CAS  Google Scholar 

  12. Gao A, Oyumi Y, Brill TB (1991) Combust Flame 83:345–352

    Article  CAS  Google Scholar 

  13. Lesnikovich AI, Ivashkevich OA, Printsev GV, Gaponik PN, Levchik SV (1990) Thermochim Acta 171:207–213

    Article  CAS  Google Scholar 

  14. Lesnikovich AI, Levchik SV, Balabanovich AI, Ivashkevich OA, Gaponik PN (1992) Thermochim Acta 200:427–441

    Article  CAS  Google Scholar 

  15. Reddy GO, Mohan VK, Murali BKM, Chatterjee AK (1981) Thermochim Acta 43:61–73

    Article  CAS  Google Scholar 

  16. Vyazovkin SV, Lesnikovich AI, Lyutsko VA (1990) Thermochim Acta 165:17–22

    Article  CAS  Google Scholar 

  17. Levchik SV, Ivashkevich OA, Balabanovich AI, Lesnikovich AI, Gaponik PN, Costa L (1992) Thermochim Acta 207:115–130

    Article  CAS  Google Scholar 

  18. Lesnikovich AI, Printsev GV, Ivashkevich OA, Gaponik PN, Shandakov VA (1991) Thermochim Acta 184:221–231

    Article  CAS  Google Scholar 

  19. Lesnikovich AI, Ivashkevich OA, Levchik SV, Balabanovich AI, Gaponik PN, Kulak AA (2002) Thermochim Acta 388:233–251

    Article  CAS  Google Scholar 

  20. Brill TB, Ramanathan H (2000) Combust Flame 122:333–338

    Article  Google Scholar 

  21. Chen C (2000) Int J Quantum Chem 80:27–37

    Article  CAS  Google Scholar 

  22. Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503–509

    Article  CAS  Google Scholar 

  23. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:281–289

    Article  CAS  Google Scholar 

  24. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  25. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  26. Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  27. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–677

    Article  CAS  Google Scholar 

  28. Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J (1988) J Chem Phys 89:2193–2197

    Article  CAS  Google Scholar 

  29. Dunning TH Jr (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  30. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  31. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1385–1393

    Article  Google Scholar 

  32. Purvis GD, Bartlett RJ (1982) J Chem Phys 76:1910–1918

    Article  CAS  Google Scholar 

  33. Curtiss LA, Raghavachari K, Redfern PC, Rassolv V, Pople JA (1998) J Chem Phys 109:7764–7776

    Article  CAS  Google Scholar 

  34. Baboul AG, Curtiss LA, Redfern PC, Raghavachari K (1999) J Chem Phys 110:7650–7657

    Article  CAS  Google Scholar 

  35. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (2000) J Chem Phys 112:6532–6542

    Article  CAS  Google Scholar 

  36. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2003) Gaussian 03, Revision A.1. Gaussian Inc, Pittsburgh PA

    Google Scholar 

  38. Truhlar DG, Isaacson AD, Garrett BC (1985) Theory of chemical reaction dynamics, vol. 4, CRC Press, Boca Raton

  39. Miller WH (1979) J Am Chem Soc 101:6810–6814

    Article  CAS  Google Scholar 

  40. Truhlar DG, Garrett BC (1984) Annu Rev Phys Chem 35:159–189

    Article  CAS  Google Scholar 

  41. Truong NT (1994) J Chem Phys 100:8014–8025

    Article  Google Scholar 

  42. Liu YP, Lynch GC, Troung TN, Lu DH, Truhlar DG, Garrett BC (1993) J Am Chem Soc 115:2408–2415

    Article  CAS  Google Scholar 

  43. Truhlar DG, Isaacson AD, Garrett BC (1982) J Phys Chem 86:2252–2263

    Article  CAS  Google Scholar 

  44. Truong NT, Truhlar DG (1990) J Chem Phys 93:1761–1769

    Article  CAS  Google Scholar 

  45. Zhang SW, Truong TN (2001) VKLab version 1.0, University of Utah

  46. Chuang YY, Corchado JC, Fast PL, Will J, Hu WP, Liu YP, Lynch GC, Jackels CF, Nguyen KA, Gu MZ, Rossi I, Isaacson EL, Truhlar DG (1999) POLYRATE, Program vision 8.2, Minneapolis

  47. Calandra P, Longo A, Ruggirello A, Liveri VT (2004) J Phys Chem B 108:8260–8268

    Article  CAS  Google Scholar 

  48. Carlo SR, Torres J, Fairbrother DH (2001) J Phys Chem B 105:6148–6157

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor D.G. Truhlar for proving the POLYRATE 8.2 program. The project was supported by NSAF Foundation (No. 10776002) of the National Natural Science Foundation of China and Chinese Academy of Engineering Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Guo Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, JG., Feng, LN., Zhang, SW. et al. The mechanism and kinetics of decomposition of 5-aminotetrazole. J Mol Model 14, 403–408 (2008). https://doi.org/10.1007/s00894-008-0290-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0290-3

Keywords

Navigation