Skip to main content
Log in

Theoretical study of the novel sandwich compound [Au3Cl3Tr2]2+

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A theoretical study of a sandwich compound with a metal monolayer sheet between two aromatic ligands is presented. A full geometry optimization of the [Au3Cl3Tr2]2+ (1) compound, which is a triangular gold(I) monolayer sheet capped by chlorines and bounded to two cycloheptatrienyl (Tr) ligands was carried out using perturbation theory at the MP2 computational level and DFT. Compound (1) is in agreement with the 18–electron rule, the bonding nature in the complex may be interpreted from the donation interaction coming from the Tr rings to the Au array, and from the back-donation from the latter to the former. NICS calculations show a strong aromatic character in the gold monolayer sheet and Tr ligands; calculations done with HOMA, also report the same aromatic behavior on the cycloheptatrienyl fragments giving us an insight on the stability of (1). The Au –Au bond lengths indicate that an intramolecular aurophilic interaction among the Au(I) cations plays an important role in the bonding of the central metal sheet.

(a) Ground state geometry of complex 1; (b) Top view of compound 1 and Wiberg bond orders computed with the MP2/B1 computational method; (c) Lateral view of compound 1 and NICS values calculated with the MP2/B1 method; the values in parenthesis were obtained at the VWN/TZP level

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wilkinson G, Rosenblum M, Whiting MC, Woodward RB (1952) J Am Chem Soc 74:2125–2126

    Article  CAS  Google Scholar 

  2. Beck V, O’Hare D (2004) J Organomet Chem 689:3920–3938

    Article  CAS  Google Scholar 

  3. Kurikawa T, Takeda H, Hirano M, Judai K, Arita T, Nagao S, Nakajima A, Kaya K (1999) Organometallics 18:1430–1438

    Article  CAS  Google Scholar 

  4. Mireles N, Sansores LE, Martínez A, Salcedo R (2003) Int J Quantum Chem 94:51–56

    Article  CAS  Google Scholar 

  5. Mireles N, Salcedo R, Sansores LE, Martínez A (2000) Int J Quantum Chem 80:258–263

    Article  CAS  Google Scholar 

  6. Burdett JK, Canadell E (1985) Organometallics 4:805–815

    Article  CAS  Google Scholar 

  7. Murahashi T, Fujimoto M, Oka M, Hashimoto Y, Uemura T, Tatsumi Y, Nakao Y, Ikeda A, Sakaki S, Kurosawa H (2006) Science 313:1104–1107

    Article  CAS  Google Scholar 

  8. Pyykkö P (1997) Chem Rev 97:597–636

    Article  Google Scholar 

  9. Sansores LE, Salcedo R, Flores H, Martínez A (2000) J Mol Struct (Theochem) 530:125–129

    Article  CAS  Google Scholar 

  10. Muñiz J, Sansores LE, Martínez A, Salcedo R (2007) J Mol Struct (Theochem) 820:141–147

    Article  CAS  Google Scholar 

  11. Sansores LE, Salcedo R, Martínez A (2004) J Mol Struct (Theochem) 677:145–151

    Article  CAS  Google Scholar 

  12. Schmidbaur H (1995) Chem Soc Rev 24:391–400

    Article  CAS  Google Scholar 

  13. Mingos DMP (1996) J Chem Soc, Dalton Trans 5:561–566

    Article  Google Scholar 

  14. van Zyl WE, López-de-Luzuriaga JM, Fackler Jr JP (2000) J Mol Struct 516:99–106

    Article  Google Scholar 

  15. Li J, Pyykkö P (1992) Chem Phys Lett 197:586–590

    Article  CAS  Google Scholar 

  16. Pyykkö P, Li L, Runeberg N (1994) Chem Phys Lett 218:133–138

    Article  Google Scholar 

  17. Pyykkö P (2002) Angew Chem Int Ed Engl 41:3573–3578

    Article  Google Scholar 

  18. Schwerdtfeger P (2003) Angew Chem Int Ed Engl 42:1892–1895

    Article  CAS  Google Scholar 

  19. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  20. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  21. Andrae D, Haeussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123–141

    Article  CAS  Google Scholar 

  22. Schäfer A, Huber C, Ahlrichs RJ (1994) Chem Phys 100:5829

    Article  Google Scholar 

  23. Pyykkö P, Runeberg N, Mendizabal F (1997) Chem Eur J 3:1451–1457

    Article  Google Scholar 

  24. Petersson GA, Al-Laham MA (1991) J Chem Phys 94:6081–6090

    Article  CAS  Google Scholar 

  25. Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J (1988) J Chem Phys 89:2193–2218

    Article  CAS  Google Scholar 

  26. NBO Version 3.1, Glendening ED, Reed AE, Carpenter JE, Weinhold F

  27. Slater JC (1951) Phys Rev 81:385–390

    Article  CAS  Google Scholar 

  28. Gaspar R (1954) Acta Phys Acad Sci Hung 3:263–286

    Article  Google Scholar 

  29. Schwarz K (1972) Phys Rev B 5:2466–2468

    Article  Google Scholar 

  30. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  31. Becke AD (1988) J Chem Phys 88:2547–2553

    Article  CAS  Google Scholar 

  32. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  Google Scholar 

  33. Te Velde G, Baerends EJ (1992) J Comput Phys 99:84–98

    Article  CAS  Google Scholar 

  34. Te Velde G, Bickelhaupt FM, Baerends EJ, Guerra CF, Van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967

    Article  CAS  Google Scholar 

  35. van Lenthe E, Baerends EJ, Snijders JG (1994) J Chem Phys 101:9783–9792

    Article  Google Scholar 

  36. (a) van Lenthe E (1996) Int J Quantum Chem 57:281–293 (b) van Lenthe E, Ehlers AE, Baerends EJ (1999) J Chem Phys 110:8943–8953

    Google Scholar 

  37. van Lenthe E, Snijders JG, Baerends EJ (1996) J Chem Phys 105:6505–6516

    Article  Google Scholar 

  38. Schleyer PvR, Maerker C, Dransfeld A, Jiao H, Hommes NJvE (1996) J Am Chem Soc 118:6317–6318

    Article  CAS  Google Scholar 

  39. Krygowski TM (1993) J Chem Inf Comput Sci 33:70–78

    CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven Jr T, Kudin KN, Burant JC, Millam M, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin J, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels D, Strain MC, Farkas O, Malick DK, Rabuck D, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul G, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision D.01. Gaussian Inc, Wallingford CT

    Google Scholar 

  41. Fonseca-Guerra C, Snijders JG, Te Velde G, Baerends EJ (1998) Theor Chem Acc 99:391–403

    Article  Google Scholar 

  42. ADF2006.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com

  43. Herschbach DR, Laurie VW (1961) J Chem Phys 35:458–464

    Article  CAS  Google Scholar 

  44. Wiberg KB (1968) Tetrahedron 24:1083–1096

    Article  CAS  Google Scholar 

  45. Wang S-G, Schwarz WHE (2004) J Am Chem Soc 126:1266–1276

    Article  CAS  Google Scholar 

  46. Dapprich S, Frenking G (1995) J Phys Chem 99:9352–9362

    Article  CAS  Google Scholar 

  47. Ziegler T, Rauk A (1977) Theor Chim Acta 46:1–10

    CAS  Google Scholar 

  48. Ziegler T, Rauk A, Baerends EJ (1977) Theor Chim Acta 43:261–271

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Impulsa Project, PUNTA, PAEP-UNAM, PAPIIT-IN107807 and DGSCA – UNAM for providing computing time. J. Muñiz acknowledges the financial support of the Consejo Nacional de Ciencia y Tecnología (CONACyT), under fellowship No. 180250.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Muñiz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñiz, J., Enrique Sansores, L., Martínez, A. et al. Theoretical study of the novel sandwich compound [Au3Cl3Tr2]2+ . J Mol Model 14, 417–425 (2008). https://doi.org/10.1007/s00894-008-0288-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0288-x

Keywords

Navigation