Skip to main content
Log in

Evaluation of the chemical reactivity in lignin precursors using the Fukui function

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The hydroxycinnamyl alcohols: p-coumarol, coniferol and sinapol are considered the basic units and precursors of lignins models. In this work, the specific reactivity of these molecules was studied. We investigate their intrinsic chemical reactivity in terms of the Fukui function, applying the principle of hard and soft acids and bases (HSAB) in the framework of the density functional theory (DFT). Comparisons of their nucleophilic, electrophilic and free radical reactivity show their most probably sites to form linkages among them. It is found that the most reactive sites, for reactions involving free radicals, are the carbons at the β-position in the p-coumarol and sinapol molecules, whilst the regions around the carbon-oxygen bond of the phenoxyl group are the most reactive in coniferol.

Isocontour plots for the free radical form of the Fukui function f 0 (r), showing the reactive sites toward electron-rich/poor reactants

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sakakibara A, Sano Y (2001) Lignin. In: Hon DNS, Shirasi N (eds) Wood and cellulosic chemistry, chapter 4. CRC, New York, pp 109–174

    Google Scholar 

  2. Freudenberg K (1965) Science 148:595–600

    Article  CAS  Google Scholar 

  3. Monties B (1989) Plant phenolics. In: Dey PM, Harborne JB (eds) Methods in plant biochemistry. Academic, New York, pp 113–157

    Google Scholar 

  4. Higuchi T (2006) Wood Sci Technol 40:16–25

    Article  CAS  Google Scholar 

  5. Thielemans W, Wool RP (2005) Biomacromolecules 6:1895–1905

    Article  CAS  Google Scholar 

  6. John R, Yinsheng Z (1998) Tetrahedron 58:1349–1354

    Google Scholar 

  7. Liu R, Zhou X (1993) J Phys Chem 97:9613–9617

    Article  CAS  Google Scholar 

  8. Glasser WG, Sarkanen S (1989) Lignin, properties and materials. American Chemical Society, Washington, DC, pp 64–113

    Google Scholar 

  9. Jurasek L (1995) J Pulp Paper Sci 21:274–279

    Google Scholar 

  10. Houtman CJ, Atalla RH (1995) Plant Physiol 107:977–984

    CAS  Google Scholar 

  11. Simon JP, Eriksson LA (1995) Holzforschung 49:429–438

    Article  CAS  Google Scholar 

  12. Elder TJ, McKee ML, Worley SD (1988) Holzforschung 42:233–240

    Article  CAS  Google Scholar 

  13. Besombes S, Robert D, Utille JP, Taravel F, Mazeau K (2003) J Agric Food Chem 51:34–42

    Article  CAS  Google Scholar 

  14. Durbeej B, Eriksson LA (2003) Holzforschung 57:466–478

    Article  CAS  Google Scholar 

  15. Pearson RG (1963) J Am Chem Soc 85:3533–3539

    Article  CAS  Google Scholar 

  16. Beck ME (2005) J Chem Inf Model 45:273–282

    Article  CAS  Google Scholar 

  17. Ayers PW, Parr RG (2000) J Am Chem Soc 122:2010–2018

    Article  CAS  Google Scholar 

  18. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York, pp 70–84

    Google Scholar 

  19. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  20. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  21. Yang W, Parr RG (1985) Proc Natl Acad Sci USA 82:6723–6726

    Article  CAS  Google Scholar 

  22. Parr RG, Yang W (1984) J Am Chem Soc 106:4049–4050

    Article  CAS  Google Scholar 

  23. Chattaraj PK, Lee H, Parr RG (1991) J Am Chem Soc 113:1855–1856

    Article  CAS  Google Scholar 

  24. Gázquez JL (1993) Chemical hardness. In: Sen KD (ed) Structure and bonding 80:27–42

  25. von Barth U, Gelatt CD (1980) Phys Rev B 21:2222–2228 and references therein

    Article  Google Scholar 

  26. Herrera H, Nagarajan A, Morales MA, Mendez F, Jiménez HA, Zepeda LG, Tamariz J (2001) J Org Chem 66:1252–1263

    Article  CAS  Google Scholar 

  27. López P, Méndez F (2004) Org Lett 6:1781–1783

    Article  CAS  Google Scholar 

  28. Nemukhin AV, Grigorenko BL, Granovsky A (2004) Mosc Univ Chem Bull 45:75–78

    Google Scholar 

  29. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  30. Portmann S, Flükiger HP, Weber J (2000) Swiss center for scientific computing, Manno Switzerland

  31. Sakakibara A (1980) Wood Sci Technol 14:89–100

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Graduate College at the Faculty of Wood Technology, and Engineering (FITECMA) at the Universidad Michoacana de San Nicolas de Hidalgo (UMSNH) and The Michoacan State Science and Technology Council (COECYT-Michoacan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo López.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez, C., Rivera, J.L., Herrera, R. et al. Evaluation of the chemical reactivity in lignin precursors using the Fukui function. J Mol Model 14, 77–81 (2008). https://doi.org/10.1007/s00894-007-0253-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-007-0253-0

Keywords

Navigation