Skip to main content

G2, G3, and complete basis set calculations on the thermodynamic properties of triazane

Abstract

As a follow-up study to our study on tetrazane (N4H6), we present computed thermodynamic properties of triazane (N3H5). Calculated properties include optimized geometries, infrared vibrations, enthalpy of formation, enthalpy of combustion, and proton affinities. We have also mapped the potential energy surface as the molecule is rotated about the N-N bond. We have predicted a specific enthalpy of combustion for triazane of about -20 kJ g−1.

Schematic diagram of the dielectric barrier discharge (left) and typical temporal profiles of voltage and current, as obtained from the simulations (right)

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Agrawal JP (1998) Prog Energy Comb Sci 24:1–30

    Article  CAS  Google Scholar 

  2. Politzer P, Lane P, Concha MC (2005) Computational determination of the energetics of boron and aluminum combustion reactions. In: Manaa MR (ed.), Chemistry at extreme conditions. Elsevier, Amsterdam, pp 473–493

    Google Scholar 

  3. Ball DW (2001) J Phys Chem A 105:465–470

    Article  CAS  Google Scholar 

  4. Schmitz E, Ohme R, Kozakiewicz G (1965) Z Anorgan Allge Chem 339:44–51

    Article  CAS  Google Scholar 

  5. Kim Y, Gilje JW, Seff J (1977) J Am Chem Soc 99:7057–7059

    Article  CAS  Google Scholar 

  6. Schlegel HB, Skancke A (1993) J Am Chem Soc 115:7465–7471

    Article  CAS  Google Scholar 

  7. Fujii T, Selvin CP, Sablier M, Iwase K (2002) J Phys Chem A 106:3102–3105

    Article  CAS  Google Scholar 

  8. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratman RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu C, Liashenko A, Piskorz P, Komaromi, I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Gonzales C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98. Gaussian Inc, Pittsburgh PA

    Google Scholar 

  9. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA, (2004) Gaussian 03. Gaussian Inc, Wallingford CT

    Google Scholar 

  10. Dennington II R, Keith T, Millam J, Eppinnett K, Hovell WL, Gilliland R (2003) GaussView, Version 2.1. Semichem Inc, Shawnee Mission, KS

  11. Dennington II R, Keith T, Millam J, Eppinnett K, Hovell WL, Gilliland R (2003) GaussView, Version 3.09. Semichem Inc, Shawnee Mission, KS

  12. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) J Chem Phys 94:7221–7230

    Article  CAS  Google Scholar 

  13. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764–7776

    Article  CAS  Google Scholar 

  14. Ochterski JW, Petersson GA, Montgomery Jr JA (1996) J Chem Phys 104:2598–2619

    Article  CAS  Google Scholar 

  15. Gorelsky SI (2006) SWizard program, version 4.1. http://www.sgchem.net

  16. NIST Chemistry Webbook, available at http://webbook.nist.gov/chemistry/. Accessed May 12, 2007

  17. Richard RM, Ball DW (2006) J Mol Struct-THEOCHEM 776:89–96

    Article  CAS  Google Scholar 

  18. Richard RM, Ball DW (2007) J Mol Struct -THEOCHEM 806:113–120

    Article  CAS  Google Scholar 

  19. Richard RM, Ball DW (2007) J Mol Struct-THEOCHEM 806:165170

    Google Scholar 

  20. Richard RM, Ball DW (2007) J Mol Struct -THEOCHEM 814:91–98

    Article  CAS  Google Scholar 

  21. Lide DR (2001) CRC handbook of chemistry and physics, 82nd edn. CRC Press, Boca Raton, FL, p 5–89

    Google Scholar 

  22. Szulejko JE, McMahon TB (1993) J Am Chem Soc 115:7839–7848

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R. M. R. expresses appreciation to the Honors Program at Cleveland State University for their continued support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Ball.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Richard, R.M., Ball, D.W. G2, G3, and complete basis set calculations on the thermodynamic properties of triazane. J Mol Model 14, 29–37 (2008). https://doi.org/10.1007/s00894-007-0247-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-007-0247-y

Keywords