Skip to main content
Log in

σ-hole bonding: molecules containing group VI atoms

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

It has been observed both experimentally and computationally that some divalently-bonded Group VI atoms interact in a noncovalent but highly directional manner with nucleophiles. We show that this can readily be explained in terms of regions of positive electrostatic potential on the outer surfaces of such atoms, these regions being located along the extensions of their existing covalent bonds. These positive regions can interact attractively with the lone pairs of nucleophiles. The existence of such a positive region is attributed to the presence of a “σ-hole.” This term designates the electron-deficient outer lobe of a half-filled p bonding orbital on the Group VI atom. The positive regions become stronger as the electronegativity of the atom decreases and its polarizability increases, and as the groups to which it is covalently bonded become more electron-withdrawing. We demonstrate computationally that the σ-hole concept and the outer regions of positive electrostatic potential account for the existence, directionalities and strengths of the observed noncovalent interactions.

Calculated B3PW91/6-31G** electrostatic potential of F2S, computed on the 0.001 electrons/bohr3 contour of the electronic density. The sulfur atom is toward the reader; the red areas indicate the most positive potentials, reaching +34.4 kcal/mole, along the extensions of the F-S bonds. The purple region (negative) on the left and the one (not totally visible) on the right side of the sulfur are due to its nonbonded s and p electrons. The fluorines (top left and bottom left) also have negative regions of potential (purple areas)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rosenfield RE Jr, Parthasarathy R, Dunitz JD (1977) J Am Chem Soc 99:4860–4862

    Article  CAS  Google Scholar 

  2. Guru Row TN, Parthasarathy R (1981) J Am Chem Soc 103:477–479

    Article  Google Scholar 

  3. Glusker JP (1998) Topics Curr Chem 198:1–56

    Article  CAS  Google Scholar 

  4. Murray-Rust P, Motherwell WDS (1979) J Am Chem Soc 101:4374–4376

    Article  CAS  Google Scholar 

  5. Murray-Rust P, Stallings WC, Monti CT, Preston RK, Glusker JP (1983) J Am Chem Soc 105:3206–3214

    Article  CAS  Google Scholar 

  6. Ramasubbu N, Parthasarathy R, Murray-Rust P (1986) J Am Chem Soc 108:4308–4314

    Article  CAS  Google Scholar 

  7. Auffinger P, Hays FA, Westhof E, Shing Ho P (2004) Proc Nat Acad Sci 101:16789–16794

    Article  CAS  Google Scholar 

  8. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386–395

    Article  CAS  Google Scholar 

  9. Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) J Mol Mod 13:305–311

    Article  CAS  Google Scholar 

  10. Politzer P, Murray JS, Concha MC (2007) J Mol Mod, in press online

  11. Bernard-Houplain MC, Sandorfy C (1973) Can J Chem 51:1075–1082, 3640–3646

    Article  CAS  Google Scholar 

  12. Di Paolo T, Sandorfy C (1974) Can J Chem 52:3612–3622

    Article  Google Scholar 

  13. Corradi E, Meille SV, Messina MT, Metrangolo P, Resnati G (2000) Angew Chem Int Ed 39:1782–1786

    Article  CAS  Google Scholar 

  14. Brinck T, Murray JS, Politzer P (1992) Int J Quantum Chem, Quantum Biol Symp 19:57–64

    Article  CAS  Google Scholar 

  15. Murray JS, Paulsen K, Politzer P (1994) Proc Indian Acad Sci (Chem Sci) 106:267–275

    CAS  Google Scholar 

  16. Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979

    Article  CAS  Google Scholar 

  17. Lide DR (ed) (2006) Handbook of chemistry and physics, 87th edn. CRC, Boca Raton, FL

    Google Scholar 

  18. Valerio G, Raos G, Meille SV, Metrangolo P, Resnati G (2000) J Phys Chem A 104:1617–1620

    Article  CAS  Google Scholar 

  19. Romaniello P, Lelj F (2002) J Phys Chem A 106:9114–9119

    Article  CAS  Google Scholar 

  20. Guardigli C, Liantonio R, Mele MI, Metrangolo P, Resnati G, Pilati T (2003) Supramol Chem 15:177–188

    Article  CAS  Google Scholar 

  21. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  22. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Mod 13:291–296

    Article  CAS  Google Scholar 

  23. Stewart RF (1972) J Chem Phys 57:1664–1668

    Article  CAS  Google Scholar 

  24. Politzer P, Truhlar DG (eds) (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York

    Google Scholar 

  25. Iwaoka M, Komatsu H, KatsudaT, Tomoda S (2002) J Am Chem Soc 124:1902–1909, and papers cited

    Article  CAS  Google Scholar 

  26. Cozzolino AF, Vargas-Baca I, Mansour S, Mahmoudkhani AH (2005) J Am Chem Soc 127:3184–3190

    Article  CAS  Google Scholar 

  27. Bleiholder C, Werz DB, Köppel H, Gleiter R (2006) J Am Chem Soc 128:2666–2674

    Article  CAS  Google Scholar 

  28. Bondi A (1964) J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane S. Murray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murray, J.S., Lane, P., Clark, T. et al. σ-hole bonding: molecules containing group VI atoms. J Mol Model 13, 1033–1038 (2007). https://doi.org/10.1007/s00894-007-0225-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-007-0225-4

Keywords

Navigation