Skip to main content
Log in

Molecular dynamics study of the initial stages of catalyzed single-wall carbon nanotubes growth: force field development

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Effective force fields for Ni-C interactions developed by Yamaguchi and Maruyama for the formation of metallofullerenes are modified to simulate the catalyzed growth of single-wall carbon nanotubes on Nin clusters with n >20, and the reactive empirical bond order Brenner potential for C-C interactions is also revised to include the effect of the metal atoms on such interactions.

Force field parameters for carbon-metal interactions obtained from DFT calculations in small clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Iijima S, Ichihashi T (1993) Nature 363:603–605

    Article  CAS  Google Scholar 

  2. Rinzler AG, Liu J, Dai H, Nikolaev P, Huffman CB, Rodriguez-Macias FJ, Boul PJ, Lu AH, Heymann D, Colbert DT, Lee RS, Fischer JE, Rao AM, Eklund PC, Smalley RE (1998) Appl Phys A 67:29–37

    Article  CAS  Google Scholar 

  3. Journet C, Maser WK, Bernier P, Loiseau A, delaChapelle ML, Lefrant S, Deniard P, Lee R, Fischer JE (1997) Nature 388:756–758

    Article  CAS  Google Scholar 

  4. Peigney A, Laurent C, Dobigeon F, Rousset A (1997) J Mat Res 12:613–615

    CAS  Google Scholar 

  5. Hafner JH, Bronikowski MJ, Azamian BR, Nikolaev P, Rinzler AG, Colbert DT, Smith KA, Smalley RE (1998) Chem Phys Lett 296:195–202

    Article  CAS  Google Scholar 

  6. Kitiyanan B, Alvarez WE, Harwell JH, Resasco DE (2000) Chem Phys Lett 317:497–503

    Article  CAS  Google Scholar 

  7. Li Y, Kim W, Zhang Y, Rolandi M, Wang D, Dai H (2001) J Phys Chem B 105:11424–11431

    Article  CAS  Google Scholar 

  8. Alvarez WE, Pompeo F, Herrera JE, Balzano L, Resasco DE (2002) Chem Mat 14:1853–1858

    Article  CAS  Google Scholar 

  9. Zhang L, Balzano L, Resasco DE (2005) J Phys Chem B 109:14375–14381

    Article  CAS  Google Scholar 

  10. Mann DJ, Halls MD, Hase WL (2002) J Phys Chem B 106:12418–12425

    Article  CAS  Google Scholar 

  11. Maruyama S, Shibuta Y (2002) Mol Cryst Liq Cryst 387:311–316

    Article  Google Scholar 

  12. Vinciguerra V, Buonocore F, Panzera G, Occhipinti L (2003) Nanotechnology 14:655–660

    Article  CAS  Google Scholar 

  13. Hernandez E, Ordejon P, Boustani I, Rubio A, Alonso JA (2000) J Chem Phys 113:3814–3821

    Article  CAS  Google Scholar 

  14. Bolton K, Rosen A (2002) Phys Chem Chem Phys 4:4481–4488

    Article  CAS  Google Scholar 

  15. Bernholc J, Rabec CB, Nardelli MB, Maiti A, Roland C, Yakobson BI (1998) Appl Phys A 67:39–46

    Article  CAS  Google Scholar 

  16. Shibuta Y, Maruyama S (2002) Physica B 323:187–189

    Article  CAS  Google Scholar 

  17. Roland C, Bernholc J, Brabec C, Nardelli MB, Maiti A (2000) Mol Simul 25:1–12

    CAS  Google Scholar 

  18. Erkoc S, Malcioglu OB (2001) Int J Mod Phys C 12:865–870

    Article  CAS  Google Scholar 

  19. Ding F, Bolton K, Rosen A (2004) J Phys Chem B 108:17369–17377

    Article  CAS  Google Scholar 

  20. Raty J, Gygi F, Galli G (2005) Phys Rev Lett 95:096103

    Article  Google Scholar 

  21. Zhao J, Martinez-Limia A, Balbuena PB (2005) Nanotechnology 16:S575–S581

    Article  Google Scholar 

  22. Balbuena PB, Zhao J, Huang S, Wang Y, Sakulchaicharoen N, Resasco DE (2006) J Nanosci Nanotech 6:1247–1258

    Article  CAS  Google Scholar 

  23. Zhao J, Balbuena PB (2006) J Phys Chem A 110:2771–2775

    Article  CAS  Google Scholar 

  24. Brenner DW (1990) Phys Rev B 42:9458–9471

    Article  CAS  Google Scholar 

  25. Brenner DW, Shenderova OA, Harrison JA, Stuart S, Ni B, Sinnott SB (2002) J Phys Condens Matter 14:783–802

    Article  CAS  Google Scholar 

  26. Maiti A, Brabec CJ, Roland C, Bernholc J (1995) Physical Review B 52:14850

    Article  CAS  Google Scholar 

  27. Yamaguchi Y, Maruyama S (1999) Eur Phys J D 9:385–388

    Article  CAS  Google Scholar 

  28. Resasco DE, Alvarez WE, Pompeo F, Balzano L, Herrera JE, Kitiyanan B, Borgna A (2002) J Nanoparticle Res 4:131–136

    Article  CAS  Google Scholar 

  29. Fan X, Buczko R, Puretzky AA, Geohegan DB, Howe JY, Pantelides ST, Pennycook SJ (2003) Phys Rev Lett 90:Art. No. 145501

  30. Tersoff J (1989) Phys Rev B 39:5566–5568

    Article  Google Scholar 

  31. Numakura H, Kashiwazaki K, Yokohama H, Koiwa M (2000) J Alloys Compd 310:344–350

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Science Foundation (NER/CTS-04003651) is gratefully acknowledged. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC03–76SF00098. Supercomputer time granted by the DoD Major Shared Resource Center (ARL MSRC) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perla B. Balbuena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez-Limia, A., Zhao, J. & Balbuena, P.B. Molecular dynamics study of the initial stages of catalyzed single-wall carbon nanotubes growth: force field development. J Mol Model 13, 595–600 (2007). https://doi.org/10.1007/s00894-007-0188-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-007-0188-5

Keywords

Navigation