QSAR models for predicting the activity of non-peptide luteinizing hormone-releasing hormone (LHRH) antagonists derived from erythromycin A using quantum chemical properties


Multiple linear regression (MLR) combined with genetic algorithm (GA) and Bayesian-regularized Genetic Neural Networks (BRGNNs) were used to model the binding affinity (pKI) of 38 11,12-cyclic carbamate derivatives of 6-O-methylerythromycin A for the Human Luteinizing Hormone-Releasing Hormone (LHRH) receptor using quantum chemical descriptors. A multiparametric MLR equation with good statistical quality was obtained that describes the features relevant for antagonistic activity when the substituent at the position 3 of the erythronolide core was varied. In addition, four-descriptor linear and nonlinear models were established for the whole dataset. Such models showed high statistical quality. However, the BRGNN model was better than the linear model according to the external validation process. In general, our linear and nonlinear models reveal that the binding affinity of the compounds studied for the LHRH receptor is modulated by electron-related terms.

General structure and numbering of the 11,12-cyclic carbamate derivatives of 6-O-methylerythromycin A used in this study

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Huirne JAF, Lambalk CB (2001) Lancet 358:1793–1803

    Article  CAS  Google Scholar 

  2. 2.

    Filicori M, Flamigni C (1988) Drugs 35:63–82

    CAS  Article  Google Scholar 

  3. 3.

    Kutscher B, Bernd M, Beckers T, Polymeropoulos EE, Engel J (1997) Angew Chem Int Ed 36:2148–2161

    Article  Google Scholar 

  4. 4.

    Karten MJ (1992) An overview of GnRH antagonist development: Two decades of progress. In: Crowley Jr WF, Conn PM (eds) Modes of Action of GnRH and GnRH Analog. Elsevier, New York, pp 277–297

    Google Scholar 

  5. 5.

    Cho N, Harada M, Imaeda T, Imada T, Matsumoto H, Hayase Y, Sasaki S, Furuya S, Suzuki N, Okubo S, Ogi K, Endo S, Onda H, Fujino M (1998) J Med Chem 41:4190–4195

    Article  CAS  Google Scholar 

  6. 6.

    De Vita RJ, Hollings DD, Goulet MT, Wyvratt MJ, Fisher MH, Lo JL, Yang YT, Cheng K, Smith RG (1999) Bioorg Med Chem Lett 9:2615–2620

    Article  Google Scholar 

  7. 7.

    Chu L, Hutchins JE, Weber AE, Lo JL, Yang YT, Cheng K, Smith RG, Fisher MH, Wyvratt MJ, Goulet MT (2001) Bioorg Med Chem Lett 11:509–513

    Article  CAS  Google Scholar 

  8. 8.

    Zhu YF, Struthers RS, Connors Jr PJ, Gao Y, Gross TD, Saunders J, Wilcoxen K, Reinhart GJ, Ling N, Chen C (2002) Bioorg Med Chem Lett 12:399–402

    Article  CAS  Google Scholar 

  9. 9.

    Flanagan CA, Becker II, Davidson JS, Wakefield IK, Zhou W, Sealfon SC, Millar RP (1994) J Biol Chem 269:22636–22641

    CAS  Google Scholar 

  10. 10.

    Gasteiger J (2006) Anal Bioanal Chem 384:57–64

    Article  CAS  Google Scholar 

  11. 11.

    Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley, Weinheim

    Google Scholar 

  12. 12.

    Karelson M, Lobanov VS, Katritzky AR (1996) Chem Rev 96:1027–1043

    Article  CAS  Google Scholar 

  13. 13.

    Fernández M, Caballero J (2006) J Mol Graph Modell 25:410–422

    Article  CAS  Google Scholar 

  14. 14.

    Randolph JT, Waid P, Nichols C, Sauer D, Haviv F, Diaz G, Bammert G (2004) J Med Chem 47:1085–1097

    Article  CAS  Google Scholar 

  15. 15.

    Randolph JT, Sauer DR, Haviv F, Nilius AM, Greer J (2004) Bioorg Med Chem Lett 14:1599–1602

    Article  CAS  Google Scholar 

  16. 16.

    HyperChem 7.0 (2002) Hypercube, Gainesville

  17. 17.

    Stewart JJP (1989) J Comput Chem 10:210–220

    Google Scholar 

  18. 18.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zarkzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Baone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Peterson GA, Ayala PY, Cui Q, Morokuma K, Makick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Kiashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-laham MA, Peng CY, Nanayakkara A, González C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Repogle ES, Pople JA (1998) Gaussian 98, Revision A1. Gaussian, Pittsburgh, PA

    Google Scholar 

  19. 19.

    Thanikaivelan P, Subramanian V, Rao JR, Nair BU (2000) Chem Phys Lett 323:59–70

    Article  CAS  Google Scholar 

  20. 20.

    Hawkins DM (2004) J Chem Inf Comput Sci 44:1–12

    Article  CAS  Google Scholar 

  21. 21.

    Topliss JG, Costello RJ (1972) J Med Chem 15:1066–1068

    Article  CAS  Google Scholar 

  22. 22.

    Topliss JG, Edwards RP (1979) J Med Chem 22:1238–1244

    Article  CAS  Google Scholar 

  23. 23.

    Caballero J, Fernández M (2006) J Mol Model 12:168–181

    Article  CAS  Google Scholar 

  24. 24.

    So SS, Karplus M (1996) J Med Chem 39:1521–1530

    Article  CAS  Google Scholar 

  25. 25.

    Mackay DJC (1992) Neural Comput 4:415–447

    Google Scholar 

  26. 26.

    Mackay DJC (1992) Neural Comput 4:448–472

    Google Scholar 

  27. 27.

    Burden FR, Winkler DA (1999) J Med Chem 42:3183–3187

    Article  CAS  Google Scholar 

  28. 28.

    Winkler DA, Burden FR (2004) Biosilico 2:104–111

    CAS  Google Scholar 

  29. 29.

    Fernández M, Tundidor-Camba A, Caballero J (2005) J Chem Inf Model 45:1884–1895

    Article  CAS  Google Scholar 

  30. 30.

    Caballero J, Garriga M, Fernández M (2005) J Comput-Aided Mol Des 19:771–789

    Article  CAS  Google Scholar 

  31. 31.

    MATLAB 7.0 (2004) The Mathworks Inc, 3 Apple Hill Drive, Natick, MA 01760–2098, USA

  32. 32.

    Foresee FD, Hagan MT (1997) Gauss-Newton approximation to Bayesian learning. Proceedings of the 1997 International Joint Conference on Neural Networks. IEEE, Houston, pp 1930–1935

  33. 33.

    Golbraikh A, Tropsha A (2002) J Mol Graph Modell 20:269–276

    Article  CAS  Google Scholar 

  34. 34.

    Aptula AO, Jeliazkova NG, Schultz TW, Cronin MTD (2005) QSAR Comb Sci 24:385–396

    Article  CAS  Google Scholar 

  35. 35.

    Doweyko AM (2004) J Comput-Aided Mol Des 18:587–596

    Article  CAS  Google Scholar 

  36. 36.

    Guha R, Stanton DT, Jurs PC (2005) J Chem Inf Model 45:1109–1121

    Article  CAS  Google Scholar 

  37. 37.

    Stanton DT (2003) J Chem Inf Comput Sci 43:1423–1433

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Julio Caballero.

Electronic supplementary material


Supporting Information Available (DOC 50kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fernández, M., Caballero, J. QSAR models for predicting the activity of non-peptide luteinizing hormone-releasing hormone (LHRH) antagonists derived from erythromycin A using quantum chemical properties. J Mol Model 13, 465–476 (2007). https://doi.org/10.1007/s00894-006-0163-6

Download citation


  • QSAR analysis
  • Bayesian-regularized Genetic Neural Network
  • Quantum chemical descriptors
  • Macrolide LHRH antagonists