Abstract
Multiple linear regression (MLR) combined with genetic algorithm (GA) and Bayesian-regularized Genetic Neural Networks (BRGNNs) were used to model the binding affinity (pKI) of 38 11,12-cyclic carbamate derivatives of 6-O-methylerythromycin A for the Human Luteinizing Hormone-Releasing Hormone (LHRH) receptor using quantum chemical descriptors. A multiparametric MLR equation with good statistical quality was obtained that describes the features relevant for antagonistic activity when the substituent at the position 3 of the erythronolide core was varied. In addition, four-descriptor linear and nonlinear models were established for the whole dataset. Such models showed high statistical quality. However, the BRGNN model was better than the linear model according to the external validation process. In general, our linear and nonlinear models reveal that the binding affinity of the compounds studied for the LHRH receptor is modulated by electron-related terms.
Similar content being viewed by others
References
Huirne JAF, Lambalk CB (2001) Lancet 358:1793–1803
Filicori M, Flamigni C (1988) Drugs 35:63–82
Kutscher B, Bernd M, Beckers T, Polymeropoulos EE, Engel J (1997) Angew Chem Int Ed 36:2148–2161
Karten MJ (1992) An overview of GnRH antagonist development: Two decades of progress. In: Crowley Jr WF, Conn PM (eds) Modes of Action of GnRH and GnRH Analog. Elsevier, New York, pp 277–297
Cho N, Harada M, Imaeda T, Imada T, Matsumoto H, Hayase Y, Sasaki S, Furuya S, Suzuki N, Okubo S, Ogi K, Endo S, Onda H, Fujino M (1998) J Med Chem 41:4190–4195
De Vita RJ, Hollings DD, Goulet MT, Wyvratt MJ, Fisher MH, Lo JL, Yang YT, Cheng K, Smith RG (1999) Bioorg Med Chem Lett 9:2615–2620
Chu L, Hutchins JE, Weber AE, Lo JL, Yang YT, Cheng K, Smith RG, Fisher MH, Wyvratt MJ, Goulet MT (2001) Bioorg Med Chem Lett 11:509–513
Zhu YF, Struthers RS, Connors Jr PJ, Gao Y, Gross TD, Saunders J, Wilcoxen K, Reinhart GJ, Ling N, Chen C (2002) Bioorg Med Chem Lett 12:399–402
Flanagan CA, Becker II, Davidson JS, Wakefield IK, Zhou W, Sealfon SC, Millar RP (1994) J Biol Chem 269:22636–22641
Gasteiger J (2006) Anal Bioanal Chem 384:57–64
Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley, Weinheim
Karelson M, Lobanov VS, Katritzky AR (1996) Chem Rev 96:1027–1043
Fernández M, Caballero J (2006) J Mol Graph Modell 25:410–422
Randolph JT, Waid P, Nichols C, Sauer D, Haviv F, Diaz G, Bammert G (2004) J Med Chem 47:1085–1097
Randolph JT, Sauer DR, Haviv F, Nilius AM, Greer J (2004) Bioorg Med Chem Lett 14:1599–1602
HyperChem 7.0 (2002) Hypercube, Gainesville
Stewart JJP (1989) J Comput Chem 10:210–220
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zarkzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Baone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Peterson GA, Ayala PY, Cui Q, Morokuma K, Makick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Kiashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-laham MA, Peng CY, Nanayakkara A, González C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Repogle ES, Pople JA (1998) Gaussian 98, Revision A1. Gaussian, Pittsburgh, PA
Thanikaivelan P, Subramanian V, Rao JR, Nair BU (2000) Chem Phys Lett 323:59–70
Hawkins DM (2004) J Chem Inf Comput Sci 44:1–12
Topliss JG, Costello RJ (1972) J Med Chem 15:1066–1068
Topliss JG, Edwards RP (1979) J Med Chem 22:1238–1244
Caballero J, Fernández M (2006) J Mol Model 12:168–181
So SS, Karplus M (1996) J Med Chem 39:1521–1530
Mackay DJC (1992) Neural Comput 4:415–447
Mackay DJC (1992) Neural Comput 4:448–472
Burden FR, Winkler DA (1999) J Med Chem 42:3183–3187
Winkler DA, Burden FR (2004) Biosilico 2:104–111
Fernández M, Tundidor-Camba A, Caballero J (2005) J Chem Inf Model 45:1884–1895
Caballero J, Garriga M, Fernández M (2005) J Comput-Aided Mol Des 19:771–789
MATLAB 7.0 (2004) The Mathworks Inc, 3 Apple Hill Drive, Natick, MA 01760–2098, USA
Foresee FD, Hagan MT (1997) Gauss-Newton approximation to Bayesian learning. Proceedings of the 1997 International Joint Conference on Neural Networks. IEEE, Houston, pp 1930–1935
Golbraikh A, Tropsha A (2002) J Mol Graph Modell 20:269–276
Aptula AO, Jeliazkova NG, Schultz TW, Cronin MTD (2005) QSAR Comb Sci 24:385–396
Doweyko AM (2004) J Comput-Aided Mol Des 18:587–596
Guha R, Stanton DT, Jurs PC (2005) J Chem Inf Model 45:1109–1121
Stanton DT (2003) J Chem Inf Comput Sci 43:1423–1433
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
ESM 1
Supporting Information Available (DOC 50kb)
Rights and permissions
About this article
Cite this article
Fernández, M., Caballero, J. QSAR models for predicting the activity of non-peptide luteinizing hormone-releasing hormone (LHRH) antagonists derived from erythromycin A using quantum chemical properties. J Mol Model 13, 465–476 (2007). https://doi.org/10.1007/s00894-006-0163-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00894-006-0163-6