Skip to main content
Log in

Molecular surface electrostatic potentials and anesthetic activity

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

General anesthetics apparently act through weak, noncovalent and reversible interactions with certain sites in appropriate brain proteins. As a means of gaining insight into the factors underlying anesthetic potency, we have analyzed the computed electrostatic potentials V S(r) on the surfaces of 20 molecules with activities that vary between zero and high. Our results are fully consistent with, and help to interpret, what has been observed experimentally. We find that an intermediate level of internal charge separation is required; this is measured by Π, the average absolute deviation of V S(r), and the approximate window is 7 < Π < 13 kcal mol−1. This fits in well with the fact that anesthetics need to be lipid soluble, but also to have some degree of hydrophilicity. We further show that polyhalogenated alkanes and ethers, which include the most powerful known anesthetics, have strong positive potentials, V S,max, associated with their hydrogens, chlorines and bromines (but not fluorines). These positive sites may impede the functioning of key brain proteins, for example by disrupting their normal hydrogen-bond patterns. It has indeed been recognized for some time that the most active polyhalogenated alkanes and ethers contain hydrogens usually in combination with chlorines and/or bromines.

The computed HF/6-31G* electrostatic potential, in kcal mol−1, on the 0.001 electrons/bohr3 surface of halothane, CF3CHBrCl. The color ranges are: red, more positive than 25; yellow, between 15 and 25; green between 0 and 15; blue, between −10 and 0. The strongly positive (red) potential is due to the hydrogen; the yellow and green positive regions at the right are on the bromine surface

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sandorfy C (2005) Collect Czechoslov Chem Commun 70:539–549

    Article  CAS  Google Scholar 

  2. Meyer HH (1899) Arch Exp Pathol Pharmakol 42:109–115

    Article  Google Scholar 

  3. Overton EL (1901) Studien über die Narkose zugleich ein Beitrag zur allemeinen Pharmacologie. Fischer G, Jena

  4. Carpenter FG (1954) Am J Physiol 178:505–509

    CAS  Google Scholar 

  5. Adriani J (1962) Chemistry and Physics of Anesthesia. Thomas CC, Springfield, IL (ch 27)

  6. Miller KW, Paton WDM, Smith EB (1965) Nature 206:574–577

    Article  CAS  Google Scholar 

  7. Eger EI II, Brandstater B, Saidman LJ, Regan MJ, Severinghaus JW, Munson ES (1965) Anesthesiology 26:771–777

    Google Scholar 

  8. Halsey MJ, Kent DW (1972) Anesthesiology 36:313–315

    Article  CAS  Google Scholar 

  9. Miller KW, Paton WDM, Smith EB, Smith RA (1972) Anesthesiology 36:339–351

    Article  CAS  Google Scholar 

  10. Miller KW (1985) Int Rev Neurobiol 27:1–61

    Article  CAS  Google Scholar 

  11. Koblin DD, Chortkoff BS, Laster MJ, Eger EI II, Halsey MJ, Ionescu P (1994) Anaesth Analg 79:1043–1048

    Article  CAS  Google Scholar 

  12. Koblin DD, Laster MJ, Ionescu P, Gong D, Eger EI II, Halsey MJ, Hudlicky T (1999) Anaesth Analg 88:1161–1167

    Article  CAS  Google Scholar 

  13. Ueda I, Matsuki H, Kaminoh Y, Kaneshina S, Kamaya H (2000) Prog Anesth Mech Jpn 6:207–212

    CAS  Google Scholar 

  14. Urban BW, Bleckwenn M (2002) Br J Anaesth 89:3–16

    Article  CAS  Google Scholar 

  15. Buchet R, Sandorfy C (1985) Biophys Chemist 22:249–254

    Article  CAS  Google Scholar 

  16. Pohorille A, Cieplak P, Wilson MA (1996) Chem Phys 204:337–345

    Article  CAS  Google Scholar 

  17. Eger EI, Koblin DD, Harris RA, Kendig JJ, Pohorille A, Halsey MJ, Trudell JR (1997) Anaesth Analg 84:915–918

    Article  CAS  Google Scholar 

  18. Pohorille A, Wilson MA (1996) J Chem Phys 104:3760–3773

    Article  CAS  Google Scholar 

  19. Sandorfy C (2000) Prog Anesth Mech Jpn 6:34–39 (Special Issue)

    Google Scholar 

  20. Eger EI (2004) Am J Health Syst Pharm 61(Suppl 4):S3–S10

    CAS  Google Scholar 

  21. Trudell JR, Bertaccini E (2002) Br J Anaesth 89:32–40

    Article  CAS  Google Scholar 

  22. Stewart RF (1972) J Chem Phys 57:1664–1668

    Article  CAS  Google Scholar 

  23. Politzer P, Truhlar DG (eds) (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum Press, New York

    Google Scholar 

  24. Naray-Szabo G, Ferenczy GG (1995) Chem Rev 95:829–847

    Article  CAS  Google Scholar 

  25. Politzer P, Murray JS (1991) In: Lipkowitz KB, Boyd DB (eds) Reviews in Computational Chemistry, vol 2. VCH Publishers, New York, (ch 7)

    Google Scholar 

  26. Murray JS, Politzer P (1998) J Mol Struct Theochem 425:107–114

    Article  CAS  Google Scholar 

  27. Politzer P, Murray JS (1999) Trends Chem Phys 7:157–165

    CAS  Google Scholar 

  28. Politzer P, Murray JS, Peralta-Inga Z (2001) Int J Quantum Chem 85:676–684

    Article  CAS  Google Scholar 

  29. Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979

    Article  CAS  Google Scholar 

  30. Brinck T, Murray JS, Politzer P (1992) Mol Phys 76:609–617

    Article  CAS  Google Scholar 

  31. Hagelin H, Brinck T, Berthelot M, Murray JS, Politzer P (1995) Can J Chem 73:483–488

    Article  CAS  Google Scholar 

  32. Park JD, Stricklin B, Lacher JR (1954) J Am Chem Soc 76:1387–1388

    Article  CAS  Google Scholar 

  33. Larsen ER (1969) Fluorine Chem Rev 3:1–44

    CAS  Google Scholar 

  34. Terrell RC, Speers L, Szur AJ, Treadwell J, Ucciardi TR (1971) J Med Chem 14:517–519

    Article  CAS  Google Scholar 

  35. Terrell RC, Speers L, Szur AJ, Ucciardi T, Vitcha JF (1972) J Med Chem 15:606–608

    Article  Google Scholar 

  36. Brinck T, Murray JS, Politzer P (1992) Int J Quantum Chem Quantum Biol Symp 19:57–64

    Article  CAS  Google Scholar 

  37. Murray JS, Paulsen K, Politzer P (1994) Proc Indian Acad Sci (Chem Sci) 106:267–275

    CAS  Google Scholar 

  38. Auffinger P, Hays FA, Westhof E, Shing Ho P (2004) Proc Natl Acad Sci 101:16789–16794

    Article  CAS  Google Scholar 

  39. Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2006) J Mol Mod DOI 10.1007/s00894-006-0154-7

  40. Clark T, Hennemann M, Murray JS, Politzer P (2006) J Mol Mod DOI 10.1007/s00894-006-0130-2

  41. Bent HA (1968) Chem Rev 68:587–648

    Article  CAS  Google Scholar 

  42. Dumas J-M, Peurichard H, Gomel M (1978) J Chem Res (S)54–55

  43. Ramasubbu N, Parthasarathy R, Murray-Rust P (1986) J Am Chem Soc 108:4308–4314

    Article  CAS  Google Scholar 

  44. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386–395

    Article  CAS  Google Scholar 

  45. Bacher A, Burton AW, Uchida T, Zornow MH (1997) Anaesth Analg 85:1203–1206

    Article  CAS  Google Scholar 

  46. Targ AG, Yasuda N, Eger EI II, Huang G, Vernice GG, Terrel RC, Koblin DD (1989) Anaesth Analg 68:599–602

    Article  CAS  Google Scholar 

  47. Di Paolo T, Sandorfy C (1974) Nature 252:471–472

    Article  Google Scholar 

  48. Bernard-Houplain M-C, Sandorfy C (1973) Can J Chem 51:1075–1082

    Article  CAS  Google Scholar 

  49. Bernard-Houplain M-C, Sandorfy C (1973) Can J Chem 3640–3646

  50. Di Paolo T, Sandorfy C (1974) Chem Phys Lett 26:466–469

    Article  Google Scholar 

  51. Di Paolo T, Sandorfy C (1974) Can J Chem 52:3612–3622

    Article  Google Scholar 

  52. Wulf RJ, Featherstone RM (1957) Anesthiology 18:97–105

    Article  CAS  Google Scholar 

  53. Koski WS, Kaufman JJ, Wilson KM (1973) Nature 242:65–66

    Article  CAS  Google Scholar 

  54. Stewart JJP (1990) J Comput-Aided Mol Des 4:1–8

    Article  Google Scholar 

  55. Tang P, Zubryzcki I, Xu Y (2001) J Comput Chem 22:436–444

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank Mr. Alfred Politzer for his assistance with this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Politzer.

Additional information

Proceedings of “Modeling Interactions in Biomolecules II”, Prague, September 5th–9th, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trogdon, G., Murray, J.S., Concha, M.C. et al. Molecular surface electrostatic potentials and anesthetic activity. J Mol Model 13, 313–318 (2007). https://doi.org/10.1007/s00894-006-0145-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-006-0145-8

Keywords

Navigation