Skip to main content

Advertisement

Log in

Molecular models of protein targets from Mycobacterium tuberculosis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Structural characterization of enzymes that belong to microbial metabolic pathways is very important for structure-based drug design since some of these proteins may be present in the bacterial genome, but absent in humans. Thus, metabolic pathways became potential targets for drug design. The motivation of this work is the fact that Mycobacterium tuberculosis is the cause of the deaths of millions of people in the world, so that the structural characterization of protein targets to propose new drugs has become essential. DBMODELING is a relational database, created to highlight the importance of methods of molecular modeling applied to the Mycobacterium tuberculosis genome with the aim of proposing protein-ligand docking analysis. There are currently more than 300 models for proteins from Mycobacterium tuberculosis genome in the database. The database contains a detailed description of the reaction catalyzed by each enzyme and their atomic coordinates. Information about structures, a tool for animated gif image, a table with a specification of the metabolic pathway, modeled protein, inputs used in modeling, and analysis methods used in this project are available in the database for download. The search tool can be used for reseachers to find specific pathways or enzymes.

Figure The shikimate pathway in the sequence of seven metabolic steps, from phosphoenolpyruvate and erythrose-4-phosphate until the conversion to chorismate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Snider DE, Raviglione M, Kochi A (1994) In: Bloom BR (ed) Tuberculosis: pathogenesis, protection, and control, Vol 2(11). Am Soc Microbiol, Washington

  2. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry III CE, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Barrell BG (1998) Nature 393:537–544

    Article  CAS  PubMed  Google Scholar 

  3. McKinney DJ, Jacobs Jr WR, Bloom BR (1998) Persisting problems in tuberculosis. In: Krause RM (ed) Emerging infections. Academic, New York, pp 51–146

    Google Scholar 

  4. Campos HS (1999) Boletim de Pneumologia Sanitária 7:51–64

    Google Scholar 

  5. Bloom BR, Murray CJL (1992) Science 257:1055–1064

    Google Scholar 

  6. Basso LA, Blanchard JS (1998) Adv Exp Med Biol 456:115–144

    Google Scholar 

  7. de Azevedo Jr WF, Mueller-Dieckmann HJ, Schulze-Gahmen U, Worland PJ, Sausville E, Kim SH (1996) Proc Natl Acad Sci USA 93:2735–2740

    Google Scholar 

  8. de Azevedo Jr WF, Leclerc S, Meijer L, Havlicek L, Strnad M, Kim SH (1997) Eur J Biochem 243:518–526

    Google Scholar 

  9. Foster MJ (2002) Micron 33:365–384

    Google Scholar 

  10. Karp PD (2001) Science 293:2040–2044

    Google Scholar 

  11. Browne WJ, North AC, Phillips DC, Drew K, Vanaman TC, Hill RL (1969) J Mol Biol 42:65–86

    Google Scholar 

  12. Sali A, Blundell TL (1993) J Mol Biol 234:779–815

    Article  CAS  PubMed  Google Scholar 

  13. Sánchez R, Sali A (1999) Bioinformatics 15:1060–1061

    Google Scholar 

  14. Gerstein M, Levitt M (1997) Proc Nat Acad Sci USA 94:11911–11916

    Google Scholar 

  15. Fischer D, Eisenberg D (1999) Curr Opin Struct Biol 9:208–211

    CAS  PubMed  Google Scholar 

  16. Uchôa HB, Jorge GE, da Silveira NJF, Camera Jr JC, de Azevedo Jr WF (2004) Biochem Biophys Res Commun 325:1481–1486

    Google Scholar 

  17. Laskowski RA, MacArthur MW, Thornton JM (1998) Curr Opin Struct Biol 8:631–639

    Google Scholar 

  18. Wilson C, Gregoret LM, Agard DA (1993) J Mol Biol 229:996–1006

    Google Scholar 

  19. Laskowski RA, MacArthurm MW, SmithDK, Jones DT, Hutchinson EG, Morris AL, Naylor D, Moss DS, Thornton JM (1994) PROCHECK v.3.0—Program to check the stereochemistry quality of protein structures—Operating instructions

  20. Hooft RW, Sander C, Vriend G (1996a) Proteins 26:363–376

    Google Scholar 

  21. Bowie JU, Luthy R, Eisenberg D (1991) Science 253:164–170

    Google Scholar 

  22. Kabsch W, Sander C (1983) Biopolymers 22:2577–2637

    CAS  PubMed  Google Scholar 

  23. Sippl MJ (1990) J Mol Biol 213:859–883

    CAS  PubMed  Google Scholar 

  24. Luthy R, Bowie JU, Eisenberg K (1992) Nature 356:83–85

    Article  CAS  PubMed  Google Scholar 

  25. Arcuri HA, Canduri F, Pereira JH, da Silveira NJF, Camera Jr JC, de Oliveira JS, Basso LA, Palma MS, Santos DS, de Azevedo Jr WF (2004) Biochem Biophys Res Commun 320:979–991

    Google Scholar 

  26. da Silveira NJF, Uchôa HB, Canduri F, Pereira JH, Camera Jr JC, Basso LA, Palma MS, Santos DS, de Azevedo Jr WF (2004) Biochem Biophys Res Commun 322:100–104

    Google Scholar 

  27. Brünger AT (1992) X-PLOR, a System for crystallography and NMR, Version 3.1.Yale University Press, New Haven

    Google Scholar 

  28. EU 3-D Validation Network (1998) J Mol Biol 276:417–436

    Google Scholar 

  29. DuBois P (2000) MySQL. New Riders, Indianapolis

    Google Scholar 

  30. Wall L, Christiansen T, Orwant J (2000) In: O’Reilly, Associates Inc (eds) Programming Perl, 3rd edn

  31. Pieper U, Eswar N, Braberg H, Madhusudhan MS, Davis FP, Stuart AC, Mirkovic N, Rossi A, Marti-Renom MA, Fiser A, Webb B, Greenblatt D, Huang CC, Ferrin TE, Sali A (2004) Nucleic Acids Res 32:D217-D222

    Google Scholar 

  32. Kawabata T, Fukuchi S, Homma K, Ota M, Araki J, Ito T, Ichiyoshi N, Nishikawa K (2002) Nucleic Acids Res 30:294–298

    Google Scholar 

  33. Bairoch A, Apweiler R (1999) Nucleic Acids Res 27:49–54

    Google Scholar 

  34. Westbrook J, Feng Z, Chen L, Yang H, Berman HM (2003) Nucleic Acids Res 31:489–491

    Article  CAS  PubMed  Google Scholar 

  35. Abola BB, Bernstein FC, Bryant SH, Koetzle T, Weng J (1987) Protein data bank. In: Allen FH, Bergerhoff G, Sievers R (eds) Crystallographic databases-information, content, software systems, scientific applications. Data Commission of the International Union of Crystallography, Bonn Cambridge Chester, pp 107–132

    Google Scholar 

  36. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) Nucleic Acids Res 27:29–34

    Google Scholar 

  37. Karp PD, Riley M, Paley SM, Pellegrini-Toole A (2002) Nucleic Acids Res 30:59–61

    Google Scholar 

  38. Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A (2000) Annu Rev Biophys Biomol Struct 29:291–325

    Article  CAS  PubMed  Google Scholar 

  39. Sanchez R, Sali A (1998) Proc Natl Acad Sci USA 95:13597–13602

    Google Scholar 

  40. Koehl P, Levitt M (1999) Nature Struct Biol 6:108–111

    Google Scholar 

  41. Coggins JR, Abell C, Evans LB, Frederickson M, Robinson DA, Roszak AW, Lapthorn AP (2003) Biochem Soc Trans 31:548–552

    Google Scholar 

  42. Campbell SA, Richards TA, Mui EJ, Samuel BV, Coggins JR, McLeod R, Roberts CW (2004) Int J Parasitol 34:5–13

    Google Scholar 

  43. Herman KM, Weaver LM (1999) Annu Rev Plant Mol Biol 50:473–503

    Google Scholar 

  44. de Azevedo Jr WF, Canduri F, de Oliveira JS, Basso LA, Palma MS, Pereira JH, Santos DS (2002) Biochem Biophys Res Commun 295:142–148

    Google Scholar 

  45. Pereira JH, Canduri F, de Oliveira JS, da Silveira NJF, Basso LA, Palma MS, de Azevedo Jr WF, Santos DS (2003) Biochem Biophys Res Commun 312:608–614

    Google Scholar 

  46. Pereira JH, Oliveira JS, Canduri F, Dias MVB, Palma MS, Basso LA, de Azevedo Jr WF, Santos DS (2004) Biochem Biophys Res Commun 325:10–17

    Google Scholar 

  47. Pereira JH, Oliveira JS, Canduri F, Dias MVB, Palma MS, Basso LA, Santos DS, de Azevedo Jr WF (2004) Acta Crystallogr Sect D-Biol Crystallogr 60:2310–2319

    Google Scholar 

  48. Chakrabarti S, John J, Sowdhamini R (2004) J Mol Model 10:69–75

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from FAPESP (Process Numbers: 02/10239–6, SMOLBNet 01/07532–0, 02/04383–7, 04/00217–0), CNPq, CAPES and Instituto do Milênio (CNPq-MCT). WFA, LAB, MSP, and DSS are researchers for the Brazilian Council for Scientific and Technological Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Filgueira de Azevedo Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silveira, N.J.F.d., Uchôa, H.B., Pereira, J.H. et al. Molecular models of protein targets from Mycobacterium tuberculosis. J Mol Model 11, 160–166 (2005). https://doi.org/10.1007/s00894-005-0240-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0240-2

Keywords

Navigation