Skip to main content
Log in

Dynamic conformational states of DNA containing T·T or BrdU·T mispaired bases: wobble H-bond pairing versus cross-strand inter-atomic contacts

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The dynamic structure of 11-mer DNA duplexes of different sequences with or without homopyrimidine (T·T, or BrdU·T) mismatches was studied by molecular dynamics (MD) simulations on a time scale from 200 ps to 1 ns. The conformational analysis suggests that in mismatched duplexes the formation of classical T·T wobble H-bonding pairing is nearest-neighbor sequence-dependent and, in most cases, three-centered H-bonds and numerous alternative close cross-strand interatomic contacts exist. Thus, in duplex W1, where the central triplet is 5′d(CTA)·d(TTG), two wobble conformations W↑ (αβ) and W↓ (βα) are formed and exchange rapidly at 300 K. In contrast, when the central triplet is 5′d(TTT)·d(ATA) (W2 duplex) wobble conformations are rarely observed at 300 K, and the T·T mispair most often adopts a “twisted” conformation with one largely persistent normal H-bond, plus a stable cross-strand contact involving a T flanking base. However, at elevated temperature (400 K) the same W2 duplex shows frequent exchange between the two classical wobble conformations (αβ↔βα), as is in the case when the central triplet is 5′d(TBrdUT)·d(ATA) (W3 duplex at 300 K). It is suggested that in the W2 sequence, restrictions due to thymine-methyl/π interactions prevent the formation of wobble pairing and thermal activation energy, and/or the chemical replacement of T by BrdU are required in order for the T(BrdU)·T mismatch to adopt and exchange between wobble conformations. The specific short and/or long-lived (double/triple) cross-strand dynamic interactions in W1, W2 and W3 duplexes are throughout characterized. These frequent atomic encounters exemplify possible inter-strand charge transfer pathways in the studied DNA molecules.

Figure 3D structure snapshots of wobble and frequent overlapping conformers formed within the W3 central triplet during 200 ps MD: α’+ ϒ’. H-bonds (magenta) and close cross-strand contacts, Å (orange).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Sch. 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Sch. 2

Similar content being viewed by others

References

  1. Brown T, Kennard O, Kneale G, Rabinovich D (1985) Nature 315:604–606

    Google Scholar 

  2. Brown T, Kneale G, Hunter WN, Kennard O (1986) Nucl Acids Res 14:1801–1809

    Google Scholar 

  3. Privé GG, Heinemann U, Chandrasegaran S, Kan L-S, Kopka ML, Dickerson RE (1987) Science 238:498–504

    Google Scholar 

  4. Maskos K, Gunn MB, LeBlanc DA, Morden KM (1993) Biochemistry 32:3583–3595

    Google Scholar 

  5. Boulard Y, Cognet JAH, Gabarro-Arpa J, Le Bret M, Carbonnaux C, Fazakerley GV (1995) J Mol Biol 246:194–208

    Google Scholar 

  6. Boulard Y, Fazakerley GV, Sowers LC (2002) Nucl Acids Res 30:1371–1378

    Google Scholar 

  7. Isaacs RJ, Rayens WS, Spielmann HP (2002) J Mol Biol 319:191–207

    Google Scholar 

  8. Venable RM, Widmalm G, Brooks BR, Egan W, Pastor RW (1992) Biopolymers 32:783–794

    Google Scholar 

  9. Špačková N, Berger I, Šponer J (2000) J Am Chem Soc 122:7564–7572

    Google Scholar 

  10. Limoli CL, Ward JF (1993) Radiat Res 134:160–169

    Google Scholar 

  11. Gralla J, Crothers DM (1973) J Mol Biol 78:301–319

    Google Scholar 

  12. Peyret N, Seneviratne PA, Allawi HT, SantaLucia Jr J (1999) Biochemistry 38:3468–3477

    Google Scholar 

  13. Robinson BH, Mailer C, Drobny G (1997) Annu Rev Biophys Biomol Struct 26:629–658

    Google Scholar 

  14. Swaminathan S, Ravishanker G, Beveridge DL (1991) J Am Chem Soc 113:5027–5040

    Google Scholar 

  15. McAteer K, Kennedy MA (2003) J Biomol Struct Dynam 20:487–506

    Google Scholar 

  16. Sowers LC, Goodman MF, Eritja R, Kaplan B, Fazakerley GV (1989) J Mol Biol 205:437–447

    Google Scholar 

  17. Arnold FH, Wolk S, Cruz P, Tinoco Jr I (1987) Biochemistry 26:4068–4075

    Google Scholar 

  18. Kouchakdjian M, Li BFL, Swann PF, Patel DJ (1988) J Mol Biol 202:139–155

    Google Scholar 

  19. Gervais V, Cognet JAH, Le Bret M, Sowers LC, Fazakerley GV (1995) Eur J Biochem 228:279–290

    Google Scholar 

  20. Yoon C, Privé GG, Goodsell DS, Dickerson RE (1988) Proc Natl Acad Sci USA 85:6332–6336

    Google Scholar 

  21. Sommers MF, Byrd RA, Gallo KA, Samson CJ, Zon G, Egan W (1985) Nucl Acids Res 13:6375–6386

    Google Scholar 

  22. Cecchini S, Girouard S, Huels MA, Sanche L, Hunting DJ (2004) Radiat Res 162:604--615

    Google Scholar 

  23. Myers RM, Fischer SG, Maniatis T, Lerman LS (1985) Nucl Acids Res 13:3111–3129

    Google Scholar 

  24. Arnott S, Hukins DWL (1972) Biochem Biophys Res Comm 47:1504–1509

    Google Scholar 

  25. Boulard Y, Cognet JAH, Fazakerley GV (1997) J Mol Biol 268:331–347

    Google Scholar 

  26. Cognet JAH, Gabarro-Arpa, Cuniasse Ph, Fazakeley GV, Le Bret M (1990) J Biomol Struct Dynam 7:1095–1115

    Google Scholar 

  27. Boulard Y, Cognet JAH, Gabarro-Arpa J, Le Bret M, Sowers LC, Fazakerley GV (1992) Nucl Acids Res 20:1933–1941

    Google Scholar 

  28. Cognet JAH, Boulard Y, Fazakerley GV (1995) J Mol Biol 246:209–226

    Google Scholar 

  29. Lavery R, Sklenar H (1989) J Biomol Struct Dynam 6:655–667

    Google Scholar 

  30. Real AN, Greenall RJ (2000) J Mol Model 6:654–658

    Google Scholar 

  31. Umezawa Y, Nishio M (2002) Nucl Acids Res 30:2183–2192

    Google Scholar 

  32. Marcus RA, Sutin N (1985) Biochim Biophys Acta 811:265–322

    Google Scholar 

Download references

Acknowledgements

This work was supported by the NCI of Canada. Supplementary material: BrdU AM1 structure, MM optimized and MD DNA 3D-structures (mol2 and pdb formats), dynamics history files, etc. are available on request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsvetan G. Gantchev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gantchev, T.G., Cecchini, S. & Hunting, D.J. Dynamic conformational states of DNA containing T·T or BrdU·T mispaired bases: wobble H-bond pairing versus cross-strand inter-atomic contacts. J Mol Model 11, 141–159 (2005). https://doi.org/10.1007/s00894-005-0238-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0238-9

Keywords

Navigation