Skip to main content

Advertisement

Log in

Prediction of β-strand packing interactions using the signature product

  • Original paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The prediction of β-sheet topology requires the consideration of long-range interactions between β-strands that are not necessarily consecutive in sequence. Since these interactions are difficult to simulate using ab initio methods, we propose a supplementary method able to assign β-sheet topology using only sequence information. We envision using the results of our method to reduce the three-dimensional search space of ab initio methods. Our method is based on the signature molecular descriptor, which has been used previously to predict protein–protein interactions successfully, and to develop quantitative structure–activity relationships for small organic drugs and peptide inhibitors. Here, we show how the signature descriptor can be used in a Support Vector Machine to predict whether or not two β-strands will pack adjacently within a protein. We then show how these predictions can be used to order β-strands within β-sheets. Using the entire PDB database with ten-fold cross-validation, we have achieved 74.0% accuracy in packing prediction and 75.6% accuracy in the prediction of edge strands. For the case of β-strand ordering, we are able to predict the correct ordering accurately for 51.3% of the β-sheets. Furthermore, using a simple confidence metric, we can determine those sheets for which accurate predictions can be obtained. For the top 25% highest confidence predictions, we are able to achieve 95.7% accuracy in β-strand ordering.

Using signature products to predict the packing interactions within a β-sheet

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.  2
Fig.   3
Fig. 4

Similar content being viewed by others

References

  1. Bohm G (1996) Biophys Chemist 59:1–32

    Article  CAS  Google Scholar 

  2. Honig B (1999) J Mol Biol 293:283–293

    Article  PubMed  CAS  Google Scholar 

  3. Jones DT (1999) J Mol Biol 292:195–202

    Article  PubMed  CAS  Google Scholar 

  4. Lin K, Simossis VA, Taylor WR, Heringa J (2005) Bioinformatics 21:152–159

    Article  PubMed  CAS  Google Scholar 

  5. Rost B (2001) J Struct Biol 134:204–218

    Article  PubMed  CAS  Google Scholar 

  6. Orengo CA, Bray JE, Hubbard T, LoConte L, Sillitoe I (1999) Proteins (Suppl 3):149–170

    Article  Google Scholar 

  7. Kolinski A, Betancourt MR, Kihara D, Rotkiewicz P, Skolnick J (2001) Proteins 44:133–149

    Article  PubMed  CAS  Google Scholar 

  8. Siepen JA, Radford SE, Westhead DR (2003) Protein Sci 12:2348–2359

    Article  PubMed  CAS  Google Scholar 

  9. Przybylski D, Rost B (2002) Proteins 46:197–205

    Article  PubMed  CAS  Google Scholar 

  10. Hutchinson EG, Sessions RB, Thornton JM, Woolfson DN (1998) Protein Sci 7:2287–2300

    Article  PubMed  CAS  Google Scholar 

  11. Steward RE, Thornton JM (2002) Proteins 48:178–191

    Article  PubMed  CAS  Google Scholar 

  12. Zaremba SM, Gregoret LM (1999) J Mol Biol 291:463–479

    Article  PubMed  CAS  Google Scholar 

  13. King RD, Clark DA, Shirazi J, Sternberg MJ (1994) Protein Eng 7:1295–1303

    Article  PubMed  CAS  Google Scholar 

  14. Churchwell CJ, Rintoul MD, Martin S, Visco Jr DP, Kotu A, Larson RS, Sillerud LO, Brown DC, Faulon JL (2004) J Mol Graph Model 22:263–273

    Article  PubMed  CAS  Google Scholar 

  15. Faulon JL, Visco Jr DP, Pophale RS (2003) J Chem Inf Comput Sci 43:707–720

    Article  PubMed  CAS  Google Scholar 

  16. Martin S, Roe D, Faulon JL (2005) Bioinformatics 21:218–226

    Article  PubMed  CAS  Google Scholar 

  17. Joachims T (1999) In: Scholkopf B, Burges CJC, Smola AJ (eds) Advances in Kernel Methods-Support Vector Learning, pp 169–184

  18. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  19. Dumais ST (1998) IEEE Intelligent Systems Magazine 13:21–23

    Google Scholar 

  20. Sheridan RP, Feuston BP, Maiorov VN, Kearsley SK (2004) J Chem Inf Comput Sci 44:1912—1928

    Article  PubMed  CAS  Google Scholar 

  21. Richardson JS, Richardson DC (2002) Proc Natl Acad Sci USA 99:2754—2759

    Article  PubMed  CAS  Google Scholar 

  22. Brown WM, Faulon JL, Sale K (2005) Comput Biol Chem 29:143—150

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the U.S. Department of Energy’s Genomics: GTL program (http://www.doegenomestolife.org) under project, “Carbon Sequestration in Synechococcus Sp.: From Molecular Machines to Hierarchical Modeling” (http://www.genomes-to-life.org). Sandia is a multiprogram laboratory operated by Sandia Corporation, a LockheedMartin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawn Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, W.M., Martin, S., Chabarek, J.P. et al. Prediction of β-strand packing interactions using the signature product. J Mol Model 12, 355–361 (2006). https://doi.org/10.1007/s00894-005-0052-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0052-4

Keywords

Navigation