Skip to main content
Log in

Application of artificial neural networks for predicting the aqueous acidity of various phenols using QSAR

  • Original paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Artificial neural networks (ANNs) have been successfully trained to model and predict the acidity constants (pK a) of 128 various phenols with diverse chemical structures using a quantitative structure-activity relationship. An ANN with 6-14-1 architecture was generated using six molecular descriptors that appear in the multi-parameter linear regression (MLR) model. The polarizability term (π I), most positive charge of acidic hydrogen atom (q +), molecular weight (MW), most negative charge of the phenolic oxygen atom (q ), the hydrogen-bond accepting ability (ɛ B) and partial-charge weighted topological electronic (PCWTE) descriptors are inputs and its output is pK a. It was found that a properly selected and trained neural network with 106 phenols could represent the dependence of the acidity constant on molecular descriptors fairly well. For evaluation of the predictive power of the ANN, an optimized network was used to predict the pK as of 22 compounds in the prediction set, which were not used in the optimization procedure. A squared correlation coefficient (R 2) and root mean square error (RMSE) of 0.8950 and 0.5621 for the prediction set by the MLR model should be compared with the values of 0.99996 and 0.0114 by the ANN model. These improvements are due to the fact that the pK a of phenols shows non-linear correlations with the molecular descriptors.

Plot of the calculated values of pK a from the ANN model versus the experimental values of it for training, validation and prediction sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cronce DT, Famini GR, Soto JAD, Wilson LY (1998) J Chem Soc Perkin Trans 2:1293–1301

    Google Scholar 

  2. Engberts JBFN, Famini GR, Perjessy A, Wilson LY (1998) J Phys Org Chem 11:261–272

    Article  CAS  Google Scholar 

  3. McClelland HE, Jurs PC (2000) J Chem Inf Comput Sci 40:967–975

    Article  PubMed  CAS  Google Scholar 

  4. Hiob R, Karelson M (2000) J Chem Inf Comut Sci 40:1062–1071

    Article  CAS  Google Scholar 

  5. Habibi-Yangjeh A (2004) Indian J Chem B 43:1504–1526

    Google Scholar 

  6. Ma Y, Gross KC, Hollingsworth CA, Seybold PG, Murray JS (2004) J Mol Model 10:235–239

    Article  CAS  Google Scholar 

  7. Karelson M, Lobanov VS (1996) Chem Rev 96:1027–1043

    Article  PubMed  CAS  Google Scholar 

  8. Todeschini R, Consonni V (2000) Handbook of Molecular Descriptors. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  9. Kramer R (1998) Chemometric techniques for quantitative analysis. Marcel Dekker, New York

    Google Scholar 

  10. Kuzmanovski I, Aleksovska S (2003) Chemom Intell Lab Syst 67:167–174

    Article  CAS  Google Scholar 

  11. Barros AS, Rutledge DN (1998) Chemomet Intell Lab Syst 40:65–72

    Article  CAS  Google Scholar 

  12. Garkani-Nejad Z, Karlovits M, Demuth W, Stimpfl T, Vycudilik W, Jalali-Heravi M, Varmuza K (2004) J Chromatogr A 1028:287–295

    Article  PubMed  CAS  Google Scholar 

  13. Patterson DW (1996) Artificial neural networks: theory and applications. Simon and Schuster, New York

    Google Scholar 

  14. Zupan J, Gasteiger J (1999) Neural networks in chemistry and drug design. Wiley-VCH, Weinheim

    Google Scholar 

  15. Agatonovic-Kustrin S, Beresford R (2000) J Pharm Biomed Anal 22:717–727

    Article  PubMed  CAS  Google Scholar 

  16. Fatemi MH (2002) J Chromatogr A 955:273–280

    Article  PubMed  CAS  Google Scholar 

  17. Bunz AP, Braun B, Janowsky R (1999) Fluid Phase Equilib 158:367–374

    Article  Google Scholar 

  18. Homer J, Generalis SC, Robson JH (1999) Phys Chem Chem Phys 1:4075–4081

    Article  CAS  Google Scholar 

  19. Urata S, Takada A, Uchimaru T, Chandra AK, Sekiya A (2002) J Fluorine Chem 116:163–171

    Article  CAS  Google Scholar 

  20. Koziol J (2002) Internet Electron J Mol Des 1:80–93

    CAS  Google Scholar 

  21. Habibi-Yangjeh A, Nooshyar M (2005) Bull Korean Chem Soc 26:139–145

    Article  CAS  Google Scholar 

  22. Habibi-Yangjeh A, Nooshyar M (2005) Physics and Chemistry of Liquids 43:239–247

    Article  CAS  Google Scholar 

  23. Jalali-Heravi M, Masoum S, Shahbazikhah P (2004) J Magn Reson 171:176–185

    Article  PubMed  CAS  Google Scholar 

  24. Selassie CD, DeSoyza TV, Rosario M, Gao H, Hansch C (1998) Chemico-Biological Interaction 113:175–182

    Article  CAS  Google Scholar 

  25. Gruber C, Buss V (1989) Chemosphere 19:1595–1609

    Article  Google Scholar 

  26. Citra MJ (1999) Chemosphere 38:191–206

    Article  PubMed  CAS  Google Scholar 

  27. Schuurmann G (1996) Quant Struct Act Relat 15:121–132

    Article  Google Scholar 

  28. Gross KC, Seybold PG (2001) Int J Quant Chem 85:569–579

    Article  CAS  Google Scholar 

  29. Liptak MD, Gross KC, Seybold PG, Feldgus S, Shields GC (2002) J Am Chem Soc 124:6421–6427

    Article  PubMed  CAS  Google Scholar 

  30. Hanai T, Koizumi K, Kinoshita T (2000) J Liq Chromatogr Relat Technol 23:363–385

    Article  CAS  Google Scholar 

  31. HyperChem, Release 7.0 for Windows (2002) Molecular Modeling System, Hypercube Inc

  32. Todeschini R, Consonni V, Pavan M (2002) Dragon Software Version 2.1

  33. Dean JA (1999) Lange’s Handbook of Chemistry, 15th edn. McGraw-Hill Inc.

  34. Demuth H, Beale M (2000) Neural network toolbox. Mathworks, Natick MA

    Google Scholar 

  35. Despagne F, Massart DL (1998) Analyst 123:157R–178R

    Article  PubMed  CAS  Google Scholar 

  36. Matlab 6.5. (1984–2002) Mathworks

  37. Famini GR, Wilson LY (1999) J Phys Org Chem 12:645–652

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The Authors wish to acknowledge the vice-presidency of research, university of Mohaghegh Ardebili, for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aziz Habibi-Yangjeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habibi-Yangjeh, A., Danandeh-Jenagharad, M. & Nooshyar, M. Application of artificial neural networks for predicting the aqueous acidity of various phenols using QSAR. J Mol Model 12, 338–347 (2006). https://doi.org/10.1007/s00894-005-0050-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0050-6

Keywords

Navigation