Skip to main content
Log in

Prediction of toxicity using a novel RBF neural network training methodology

  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A neural network methodology based on the radial basis function (RBF) architecture is introduced in order to establish quantitative structure-toxicity relationship models for the prediction of toxicity. The dataset used consists of 221 phenols and their corresponding toxicity values to Tetrahymena pyriformis. Physicochemical parameters and molecular descriptors are used to provide input information to the models. The performance and predictive abilities of the RBF models are compared to standard multiple linear regression (MLR) models. The leave-one-out cross validation procedure and validation through an external test set produce statistically significant R 2 and RMS values for the RBF models, which prove considerably more accurate than the MLR models.

Experimental vs predicted toxicity using the RBF methodology for the test set (41 compounds)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lu FC, Kacew S (2002) Lu’s basic toxicology. Taylor & Francis, London

    Google Scholar 

  2. Karcher W, Devillers J (1990) SAR and QSAR in environmental chemistry and toxicology: scientific tool or wishful thinking?. In: Karcher W, Devillers J (eds) Practical applications of quantitative structure-activity relationships (QSAR) in environmental chemistry and toxicology. Kluwer, Dordrecht, pp 1–12

    Google Scholar 

  3. Nendza M (1998) Structure-activity relationships in environmental sciences, ecotoxicology series 6. Chapman & Hall, London

    Google Scholar 

  4. Schultz TW, Netzeva TI, Cronin MTD (2003) SAR QSAR Environ Res 14:59–81

    Article  PubMed  CAS  Google Scholar 

  5. Netzeva TI, Schultz TW, Aptula AO, Cronin MTD (2003) SAR QSAR Environ Res 14:265–283

    Article  PubMed  CAS  Google Scholar 

  6. Zahouily M, Rhihil A, Bazoui H, Sebti S, Zakarya D (2002) J Mol Model 8:168–172

    Article  CAS  Google Scholar 

  7. Cronin MTD, Aptula AO, Duffy JC, Netzeva TI, Rowe PH, Valkova IV, Schultz TW (2002) Chemosphere 49:1201–1221

    Article  PubMed  CAS  Google Scholar 

  8. Ren S (2003) Chemosphere 53:1053–1065

    Article  PubMed  CAS  Google Scholar 

  9. Bukard U (2003) Methods for data analysis. In: Gasteiger J, Engel Th (eds) Chemoinformatics. Wiley VCH, Weinheim, pp 439–485

    Chapter  Google Scholar 

  10. Devillers J (1996) Neural networks in QSAR and drug design. Academic Press, London

    Google Scholar 

  11. Afantitis Α, Melagraki G, Makridima K, Alexandridis A, Sarimveis H, Iglessi-Markopoulou O (2005) J Mol Struct: Theochem 716:193–198

    Article  CAS  Google Scholar 

  12. Devillers J (2004) SAR QSAR Environ Res 15:237–249

    Article  PubMed  CAS  Google Scholar 

  13. Kaiser KLE (2003) Quant Struct-Act Relat 22:1–5

    Google Scholar 

  14. KaiserKLE (2003) J Mol Struct: Theochem 622:85–95

    Article  Google Scholar 

  15. Gasteiger J (2003) Handbook of chemoinformatics: from data to knowledge, vol 3. Wiley VCH, Weinheim

  16. Zupan J, Gasteiger J (1999) Neural networks in chemistry and drug design. Wiley VCH, Weinheim

    Google Scholar 

  17. Debnath AK (2001) Quantitative structure-activity relationship (QSAR): a versatile tool in drug design. In: Ghose AK, Viswanadhan VN (eds) Combinatorial library design and evaluation: principles, software tools, and applications in drug discovery. Marcel Dekker, New York, pp 73–129

    Google Scholar 

  18. Sarimveis H, Alexandridis A, Tsekouras G, Bafas G (2002) Ind Eng Chem Res 41:751–759

    Article  CAS  Google Scholar 

  19. Lessigiarska I, Cronin MTD, Worth AP, Dearden JC, Netzeva TI (2004) SAR QSAR Environ Res 15:169–190

    Article  PubMed  CAS  Google Scholar 

  20. Aptula AO, Netzeva TI, Valkona IV, Cronin MTD, Schultz TW, Kuhne R, Schuurmann G (2002) Quant Struct-Act Relat 21:12–22

    Article  CAS  Google Scholar 

  21. Darken C, Moody J (1990) Fast adaptive K-means clustering: some empirical results. IEEE INNS Int Joint Conf Neural Netw 2:233–238

    Article  Google Scholar 

  22. Dunn JC (1974) J Cybernet 3:32–57

    Google Scholar 

  23. Leonard JA, Kramer MA (1991) Radial basis function networks for classifying process faults. IEEE Control Syst 11:31–38

    Article  Google Scholar 

  24. Kennard RW, Stone LA (1969) Technometrics 11:137–148

    Article  Google Scholar 

Download references

Acknowledgements

G.M. wishes to thank the Greek State Scholarship Foundation for a doctoral assistantship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haralambos Sarimveis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melagraki, G., Afantitis, A., Makridima, K. et al. Prediction of toxicity using a novel RBF neural network training methodology. J Mol Model 12, 297–305 (2006). https://doi.org/10.1007/s00894-005-0032-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0032-8

Keywords

Navigation