Skip to main content
Log in

Ab initio and DFT study on the electrophilic addition of bromine to endo-tricyclo[3.2.1.02,4]oct-6-ene

  • Original paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Full geometric optimization of endo-tricyclo[3.2.1.02,4]oct-6-ene (endo-TCO) by ab initio and DFT methods allowed us to investigate the structure of the molecule. The double bond is endo-pyramidalized and its two faces are no longer found to be equivalent. The exo face of the double bond has regions with far more electron density (qi,HOMO) and more negative electrostatic potential. The endo-TCO-Br2 system was investigated at the B3LYP/6-311+G** level and the endo-TCO···Br2(exo) molecular complex was found to be relatively more stable than the endo-TCO···Br2(endo) complex. The cationic intermediates of the reaction were studied by ab initio and DFT methods. The bridged exo-bromonium cation(I) is relatively more stable than the endo-bromonium cation(II). An absolute exo-facial selectivity should be observed in the addition reaction of Br2 to endo-TCO, which is caused by steric and electronic factors. The nonclassical rearranged cation IV was found to be the most stable ion among the cationic intermediates and the ionic addition occurs via the formation of this cation. The mechanism of the addition reaction is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2

Similar content being viewed by others

References

  1. Belluci G, Chappe C, Bianchini R, Lenoir D, Herges R (1995) J Am Chem Soc 117:12001–12002

    Article  Google Scholar 

  2. Herges R (1995) Angew Chem Int Ed Engl 34:51–53

    Article  CAS  Google Scholar 

  3. Ruiz E, Dennis R, Salahub R, Vela A (1996) J Phys Chem 100:12265–12276

    Article  CAS  Google Scholar 

  4. Brown RS (1997) Acc Chem Res 30:131–137

    Article  CAS  Google Scholar 

  5. Bianchini R, Chappe C, Lenoir D, Lammeu R, Herges R, Grunenber J (1997) Angew Chem Int Ed Engl 36:1284–1287

    Article  CAS  Google Scholar 

  6. Bianchini R, Chiappe C, Moro LG, Lenoir D, Lemmen P, Goldberg N (1999) Chem Eur J 5:1570–1580

    Article  CAS  Google Scholar 

  7. Chiappe C, Rubertis AD, Lemmen P, Lenoir D (2000) J Org Chem 65:1273–1279

    Article  PubMed  CAS  Google Scholar 

  8. Legon AC, Thumwood JMA (2001) Phys Chem Chem Phys 3:1397–1403

    Article  CAS  Google Scholar 

  9. Chiappe C, Rubertis AD, Lemmen D, Jaber A, Lenoir D, Watteubochi C, Ponelli CS (2002) J Org Chem 67:7066–7074

    Article  PubMed  CAS  Google Scholar 

  10. Smith WB (1998) J Org Chem 63:2661–2664

    Article  PubMed  CAS  Google Scholar 

  11. Chiappe C, Rubertis DA, Detert H, Lenoir D, Wannere C, Schleyer RP (2002) Chem Eur J 8:967–978

    Article  CAS  Google Scholar 

  12. Rathere R, Lindeman SV, Zhu CJ, Mori T, Schleyer RP, Kochi JK (2002) J Org Chem 67:5106–5116

    Article  PubMed  CAS  Google Scholar 

  13. Lenoir D, Chiappe C (2003) Chem Eur J 9:1037–1044

    Article  Google Scholar 

  14. Chiappe C, Detert H, Lenoir D, Pamelli CS, Ruasse MF (2003) J Am Chem Soc 125:2864–2865

    Article  PubMed  CAS  Google Scholar 

  15. Abbasoglu R (2004) J Mol Struct (Theochem) 686:1–5 and references therein

    Google Scholar 

  16. Coxon JM, Steel PJ, Burritt A, Whittington BI (1995) Tetrahedron 51:8057–8072

    Article  CAS  Google Scholar 

  17. Dastan A, Demir U, Balci M (1999) J Org Chem 59:6534–6538

    Article  Google Scholar 

  18. Burritt A, Coxon JM, Steel PJ (1996) J Org Chem 61:4328–4335

    Article  PubMed  CAS  Google Scholar 

  19. Satake K, Hikasa K, Itoh H, Okamoto H, Kimura M, Morosawa S (1996) Bull Chem Soc Jap 69:453–457

    Article  CAS  Google Scholar 

  20. Dastan A (2001) Tetrahedron 57:8725–8732

    Article  CAS  Google Scholar 

  21. Horasan N, Kara Y, Azizoglu A, Balci M (2003) Tetrahedron 59:3691–3699

    Article  CAS  Google Scholar 

  22. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  23. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  24. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  25. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  26. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  27. Krishnan R, Frisch MJ, Pople JA, (1980) J Chem Phys 72:4244–4249

    Article  CAS  Google Scholar 

  28. Borden WT (1989) Chem Rev 89:1095–1109

    Article  CAS  Google Scholar 

  29. Ermer O, Bell P, Mason SA (1989) Angew Chem Int Ed Engl 28:1239–1241

    Article  Google Scholar 

  30. Watson WH (1983) Stereochemistry and reactivity of systems containing ( electrons. Verlag Chemie International, Deerfield beach, Florida

  31. Houk KN, Rondon NG, Brown FK, Jorgensen WL, Madura JD, Spellmeyer DC (1983) J Am Chem Soc 105:5980–5988

    Article  CAS  Google Scholar 

  32. Gandalfi R, Tonaletti G, Rostelli A, Bagatti M (1993) J Org Chem 58:6038–6048

    Article  Google Scholar 

  33. Royer J (1978) Tetrahedron Lett 1343–1346

  34. Paguette LA, Belliamy F, Wells GJ, Bohm MC, Gleiter R (1981) J Am Chem Soc 103:7122–7133

    Article  Google Scholar 

  35. Broughton HB, Green SM, Rzepa HS (1992) J Am Chem Soc, Chem Commun 998–1001

  36. Fleming I (1976) Frontier orbitals and organic chemical reactions. Wiley, New York, pp 5–33

    Google Scholar 

  37. Smirnov VV, Tihomirov VA, Cudinov GE (1993) Zh Struct Chem 34:14–18

    CAS  Google Scholar 

  38. Teberekidis VI, Sigalas MP (2002) Tetrahedron 58:6171–6178

    Article  CAS  Google Scholar 

  39. Teberekidis VI, Sigalas MP (2003) Tetrahedron 59:4749–4751

    Article  CAS  Google Scholar 

  40. Perera SA, Bartlett RJ (1996) J Am Chem Soc 1118:7849–7850

    Article  Google Scholar 

  41. Werstiuk NH, Muchall HM (1999) J Mol Struct (Theochem) 463:225–229

    Article  CAS  Google Scholar 

  42. Werstiuk NH, Muchall HM (2000) J Phys Chem 104A: 2054–2060

    Google Scholar 

  43. Werstiuk NH, Wang YG (2001) J Phys Chem 105A:11515–1152

    Google Scholar 

  44. Cremer D, Childs RL, Kraka E (1995) In the chemistry of the cyclopropyl group. In: Rappoport Z (ed) Wiley, New York, 2:339–410

  45. de la Mare PBD, Bolton R (1982) Electrophilic additions to unsaturated systems, 2nd edn. Elsevier, New York, pp 135–197

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rza Abbasoglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbasoglu, R., Yilmaz, S.S. Ab initio and DFT study on the electrophilic addition of bromine to endo-tricyclo[3.2.1.02,4]oct-6-ene. J Mol Model 12, 290–296 (2006). https://doi.org/10.1007/s00894-005-0031-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0031-9

Keywords

Navigation