Journal of Molecular Modeling

, Volume 12, Issue 5, pp 621–629 | Cite as

The ethylene/metal(0) and ethylene/metal(I) redox system: model ab initio calculations

Original Paper

Abstract

Ab initio calculations (coupled cluster with single and double excitations; CCSD) have been used to investigate the model redox systems ethylene:M(0) (M = Li, Na, K, Rb, Cs) and ethylene:M(I) (M = Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg). Within C2v symmetry, the ground (2A1) states correspond to the charge distribution given in the title. The lowest (2B2) excited states correspond, somewhat counter intuitively, \({\text{to}}\;{\text{the}}\;{\text{ethylene}}^{{\bullet -}} /{\text{M}}{\left( {{\text{II}}} \right)}\;{\text{ion}}\;{\text{pair}}.\)These trends can be rationalized on the basis of simple electrostatic and configuration-mixing arguments that lead to two simple equations for predicting the electron-transfer energies for oxidation or reduction of the ethylene. The electron-transfer energies to the 2B2 ion pairs are dominated by the electrostatic ion-pairing energies.

Figure

Calculated (CCSD/6-311+G(d,p)) spin density for 2B2\({\text{Be:ethylene}} ^{{\raise0.145em\hbox{${\scriptscriptstyle \bullet}$} + }}. \) The isodensity level is 0.005 a.u

Keywords

Electron transfer Ab initio CCSD(T) Ethylene 

References

  1. 1.
    Alex A, Clark T (1992) J Am Chem Soc 114:506–510CrossRefGoogle Scholar
  2. 2.
    Alex A, Clark T (1992) J Am Chem Soc 114:10897–10902CrossRefGoogle Scholar
  3. 3.
    Clark T (1996) Ab initio calculations on electron-transfer catalysis by metal ions. In: Mattay J (ed) Topics in current chemistry, vol 77, electron transfer II. Springer, Berlin Heidelberg New York, pp 1–24Google Scholar
  4. 4.
    Kochi JK (1991) In: Dötz KH, Hoffmann RW (eds) Organic synthesis via organometallics. Vieweg, Braunschweig, pp 95–117Google Scholar
  5. 5.
    Chanon M, Julliard M, Poite JC (1989) Paramagnetic organometallic species in actiovation/selectivity catalysis, NATO ASI Series. Kluwer, DordrechtGoogle Scholar
  6. 6.
    Trogler WC (1990) J Organomet Chem Lib 22:306–337Google Scholar
  7. 7.
    Astruc D (1991) Acc Chem Res 24:36–42CrossRefGoogle Scholar
  8. 8.
    Chanon M, Rajzmann M, Chanon F (1990) Tetrahedron 46:6193–6299CrossRefGoogle Scholar
  9. 9.
    Williams BA, Cool TA (1991) J Chem Phys 94:6358–6366CrossRefGoogle Scholar
  10. 10.
    Trenary M, Schaefer III HF, Kollmann PA (1978) J Chem Phys 68:4047–4050CrossRefGoogle Scholar
  11. 11.
    Hänsele E, Clark T (1991) Z Phys Chem 171:21–31Google Scholar
  12. 12.
    Alikhani ME, Hannachi Y, Manceron L, Boutelier Y (1995) J Chem Phys 1103:1028–1036Google Scholar
  13. 13.
    Manceron L, Andrews L (1985) J Am Chem Soc 107:563–568CrossRefGoogle Scholar
  14. 14.
    Manceron L, Andrews L (1988) J Am Chem Soc 110:3840–3846CrossRefGoogle Scholar
  15. 15.
    Rodriguez-Monge L, Larsson S (1996) J Chem Phys 105:7857–7863CrossRefGoogle Scholar
  16. 16.
    Bernardi F, Bottoni A, Fossey J, Sorba J (1989) J Mol Struct THEOCHEM 52:301–309CrossRefGoogle Scholar
  17. 17.
    White JC, Cave RJ, Davidson ER (1988) J Am Chem Soc 110:6308–6314CrossRefGoogle Scholar
  18. 18.
    Balaji V, Jordan KD (1988) J Phys Chem 92:3101–3105CrossRefGoogle Scholar
  19. 19.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03. Gaussian Inc, WallingfordGoogle Scholar
  20. 20.
    Cizek J (1969) Adv Chem Phys 14:35–89CrossRefGoogle Scholar
  21. 21.
    Purvis GD, Bartlett RJ (1982) J Chem Phys 76:1910–1918CrossRefGoogle Scholar
  22. 22.
    Scuseria GE, Janssen CL, Schaefer HF III (1988) J Chem Phys 89:7382–7387CrossRefGoogle Scholar
  23. 23.
    Scuseria GE, Schaefer HF III (1989) J Chem Phys 90:3700–3703CrossRefGoogle Scholar
  24. 24.
    McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648CrossRefGoogle Scholar
  25. 25.
    Krishnan R, Binkley RS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654CrossRefGoogle Scholar
  26. 26.
    Blaudeau J-P, McGrath MP, Curtiss LA, Radom L (1997) J Chem Phys 107:5016–5021CrossRefGoogle Scholar
  27. 27.
    Wachters AJH (1970) J Chem Phys 52:1033–1036CrossRefGoogle Scholar
  28. 28.
    Hay PJ (1977) J Chem Phys 66:4377–4384CrossRefGoogle Scholar
  29. 29.
    Raghavachari K, Trucks GW (1989) J Chem Phys 91:1062–1065CrossRefGoogle Scholar
  30. 30.
    Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PvR (1983) J Comp Chem 4:294–301CrossRefGoogle Scholar
  31. 31.
    Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269CrossRefGoogle Scholar
  32. 32.
    Dunning TH Jr, Hay PJ (1976) In: Schaefer HF III (ed) Modern theoretical chemistry, vol 3. Plenum, New York, pp 1–28Google Scholar
  33. 33.
    Wedig U, Dolg M, Stoll H, Preuss H (1986) In: Veillard A (ed) Quantum chemistry: the challenge of transition metals and coordination chemistry. Reidel, Dordrecht and references thereinGoogle Scholar
  34. 34.
    Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968–5675CrossRefGoogle Scholar
  35. 35.
    Kaldor U (1987) J Chem Phys 87:4693–4695CrossRefGoogle Scholar
  36. 36.
    Raghavachari K, Trucks GW (1989) J Chem Phys 91:2457–2460CrossRefGoogle Scholar
  37. 37.
    Iron MA, Oren M, Martin JML (2003) Mol Phys 101:1345–1361CrossRefGoogle Scholar
  38. 38.
    Clark T (1988) J Am Chem Soc 110:1672–1678CrossRefGoogle Scholar
  39. 39.
    Hiberty PC, Humbel S, Archirel P (1994) J Phys Chem 98:11697–11704CrossRefGoogle Scholar
  40. 40.
    Jordan KD, Burrow PD (1978) Chem Phys Lett 36:594–598Google Scholar
  41. 41.
    Jordan KD, Burrow PD (1978) Acc Chem Res 11:341–348CrossRefGoogle Scholar
  42. 42.
    Cossi M, Scalmani G, Rega N, Barone V (2002) J Chem Phys 117:43–54CrossRefGoogle Scholar
  43. 43.
    Emsley J (1989) The elements. Clarendon Press, OxfordGoogle Scholar
  44. 44.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Medicinal Informatics, Structure and Design, Pfizer Global Research and DevelopmentSandwich LaboratoriesSandwichUK
  2. 2.Computer-Chemie-Centrum der Universitaet Erlangen-NuernbergErlangenGermany

Personalised recommendations