Journal of Molecular Modeling

, Volume 12, Issue 2, pp 213–220 | Cite as

Numerical treatment of two-center overlap integrals

Original Paper


Among the two-center integrals occurring in the molecular context, the two-center overlap integrals are numerous and difficult to evaluate to a level of high accuracy. The analytical and numerical difficulties arise mainly from the presence of the spherical Bessel integrals in the analytic expressions of these molecular integrals. Different approaches have been used to develop efficient algorithms for the numerical evaluation of the molecular integrals under consideration. These approaches are based on quadrature rules, Levin’s u transform, or the epsilon-algorithm of Wynn. In the present work, we use the nonlinear \(\bar{D}\) transformation of Sidi. This transformation is shown to be highly efficient in improving the convergence of highly oscillatory integrals, and it has been applied to molecular multicenter integrals, namely three-center attraction, hybrid, two-, three-, and four-center two-electron Coulomb and exchange integrals over B functions and over Slater-type functions. It is also been shown that when evaluating these molecular multicenter integrals the \(\bar{D}\) transformation is more efficient compared with the methods cited above. It is now proven that the integrand occurring in the analytic expression of the two-center overlap integrals satisfies all the conditions required to apply the \(\bar{D}\) transformation. A highly accurate algorithm based on this transformation is now developed. Special cases are presented and discussed for a better optimization of the algorithm. The numerical results section illustrates clearly the high efficiency of our algorithm.


Nonlinear transformations Extrapolation methods Numerical integration Molecular integrals Slater-type functions B functions 


  1. 1.
    Weniger EJ, Steinborn EO (1983) J Chem Phys 78:6121–6132CrossRefGoogle Scholar
  2. 2.
    Weniger EJ, Steinborn EO (1983) Phys Rev A 28:2026–2041CrossRefGoogle Scholar
  3. 3.
    Grotendorst J, Weniger EJ, Steinborn EO (1986) Phys Rev A 33:3706–3726CrossRefGoogle Scholar
  4. 4.
    Weniger EJ, Steinborn EO (1988) Theor Chim Acta 73:323–336CrossRefGoogle Scholar
  5. 5.
    Homeier HHH, Steinborn EO (1992) Int J Quantum Chem 42:761–778CrossRefGoogle Scholar
  6. 6.
    Homeier HHH, Weniger EJ, Steinborn EO (1992) Comput Phys Commun 72:269–287CrossRefGoogle Scholar
  7. 7.
    Steinborn EO (1983) In: Dierckesen HH, Wilson S (eds) Methods in computational molecular physics. D Reidel, DordrechtGoogle Scholar
  8. 8.
    Filter E, Steinborn EO (1978) Phys Rev A 18:1–11CrossRefGoogle Scholar
  9. 9.
    Prosser FP, Blanchard CH (1962) J Chem Phys 36:1112CrossRefGoogle Scholar
  10. 10.
    Trivedi HP, Steinborn EO (1983) Phys Rev A 27:670–679CrossRefGoogle Scholar
  11. 11.
    Grotendorst J, Steinborn EO (1988) Phys Rev A 38:3857–3876CrossRefGoogle Scholar
  12. 12.
    Harris FE (2002) Int J Quantum Chem 88:701–734CrossRefGoogle Scholar
  13. 13.
    JD Talman (1993) Phys Rev A 48:243–249CrossRefGoogle Scholar
  14. 14.
    Guseinov II, Özmen A, Atav Ü, Yüksel H (1998) Int J Quantum Chem 67:199–204CrossRefGoogle Scholar
  15. 15.
    Guseinov II, Öztekin E, Hüseyin S (2001) J Mol Struct (THEOCHEM) 536:59–63CrossRefGoogle Scholar
  16. 16.
    Guseinov II, Mamedov BA (2001) J Mol Struct (THEOCHEM) 538:295–296CrossRefGoogle Scholar
  17. 17.
    Guseinov II, Mamedov BA, Öner F, Hüseyin S (2001) J Mol Struct (THEOCHEM) 545:265–270CrossRefGoogle Scholar
  18. 18.
    Guseinov II, Mamedov BA (1999) J Mol Struct (THEOCHEM) 465:1–6CrossRefGoogle Scholar
  19. 19.
    Mekelleche SM, Baba-Ahmed A (2000) Theor Chem Acc 103:463–468Google Scholar
  20. 20.
    Mekelleche SM, Baba-Ahmed A (1997) Int J Quantum Chem 63:843–852CrossRefGoogle Scholar
  21. 21.
    Shavitt I (1963) The Gaussian function in calculation of statistical mechanics, quantum mechanics. Methods in computational physics 2. In: Alder B, Fernbach S, Rotenberg M (eds) Quantum mechanics. Academic, New YorkGoogle Scholar
  22. 22.
    Steinborn EO, Filter E (1975) Theor Chim Acta 38:273–281CrossRefGoogle Scholar
  23. 23.
    Slater JC (1930) Phys Rev 36:57–64CrossRefGoogle Scholar
  24. 24.
    Slater JC (1932) Phys Rev 42:33CrossRefGoogle Scholar
  25. 25.
    Weniger EJ, Steinborn EO (1989) J Math Phys 30:774–784CrossRefGoogle Scholar
  26. 26.
    Bonham RA, Peacher JL, Cox HL (1964) J Chem Phys 40:3083–3086CrossRefGoogle Scholar
  27. 27.
    Homeier HHH, Steinborn EO (1992) Int J Quantum Chem 41:399–411CrossRefGoogle Scholar
  28. 28.
    Wynn P (1956) Math Tables Aids Comput 10:91–96CrossRefGoogle Scholar
  29. 29.
    Levin D (1973) Int J Comput Math B 3:371–388CrossRefGoogle Scholar
  30. 30.
    Levin D, Sidi A (1981) Appl Math Comput 9:175–215CrossRefGoogle Scholar
  31. 31.
    Sidi A (1980) J Inst Math Appl 26:1–20CrossRefGoogle Scholar
  32. 32.
    Sidi A (1997) J Comput Appl Math 78:125–130CrossRefGoogle Scholar
  33. 33.
    Safouhi H, Pinchon D, Hoggan PE (1998) Int J Quantum Chem 70:181–188CrossRefGoogle Scholar
  34. 34.
    Safouhi H, Hoggan PE (1998) J Phys A: Math Gen 31:8941–4951CrossRefGoogle Scholar
  35. 35.
    Safouhi H, Hoggan PE (1999) J Math Chem 25:259–280CrossRefGoogle Scholar
  36. 36.
    Safouhi H, Hoggan PE (1999) J Phys A: Math Gen 32:6203–6217CrossRefGoogle Scholar
  37. 37.
    Safouhi H, Hoggan PE (1999) J Comp Phys 155:331–347CrossRefGoogle Scholar
  38. 38.
    Safouhi H (2000) J Comput Phys 165:473–495CrossRefGoogle Scholar
  39. 39.
    Safouhi H (2000) J Math Chem 29:213–232CrossRefGoogle Scholar
  40. 40.
    Safouhi H, Hoggan PE (2001) Int J Quantum Chem 84:580–591CrossRefGoogle Scholar
  41. 41.
    Homeier HHH, Weniger EJ, Steinborn EO (1992) Comput Phys Commun 72:269–287CrossRefGoogle Scholar
  42. 42.
    Condon EU, Shortley GH (1970) The theory of atomic spectra. Cambridge University Press, CambridgeGoogle Scholar
  43. 43.
    Arfken GB, Weber HJ (1995) Mathematical methods for physicists, 4th edn. Academic, New YorkGoogle Scholar
  44. 44.
    Gaunt JA (1929) Phil Trans R Soc A 228:151–196CrossRefGoogle Scholar
  45. 45.
    Homeier HHH, Steinborn EO (1996) J Mol Struct (THEOCEM) 368:31–37Google Scholar
  46. 46.
    Xu Y-L (1997) J Comput Appl Math 85:53–65CrossRefGoogle Scholar
  47. 47.
    Weniger EJ, Steinborn EO (1982) Comput Phys Commun 25:149–157CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Campus Saint-JeanUniversity of Alberta 8406AlbertaCanada

Personalised recommendations