Skip to main content
Log in

Homology modeling and PAPS ligand (cofactor) binding study of bovine phenol sulfotransferase

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In order to understand the mechanisms of ligand binding and the interaction between the ligand and the bovine phenol sulfotransferase, (bSULT1A1, EC 2.8.2.1) a three-dimensional (3D) model of the bSULT1A1 is generated based on the crystal structure of the estrogen sulfotransferase (PDB code 1AQU) by using the InsightII/Homology module. With the aid of the molecular mechanics and molecular dynamics methods, the final refined model is obtained and is further assessed by Profile-3D and ProStat, which show that the refined model is reliable. With this model, a flexible docking study is performed and the results indicate that 3′-phosphoadenosine-5′- phosphosulfate (PAPS) is a more preferred ligand than coenzyme A (CoA), and that His108 forms hydrogen bond with PAPS, which is in good agreement with the experimental results. From these docking studies, we also suggest that Phe255, Phe24 and Tyr169 in bSULT1A1 are three important determinant residues in binding as they have strong van-der-Waals contacts with the ligand. The hydrogen–bonding interactions also play an important role for the stability of the complex. Our results may be helpful for further experimental investigations.

Figure The final 3D-structure of bSULT1A1. The structure is obtained by energy minimizing an average conformation over the last 100 ps of MD simulation. The α-helix is represented in red and the β-sheet in yellow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Roy AB (1981) Sulfation of drugs and related compounds. In: Mulder GJ (ed) CRC Press, Boca Raton, FL, pp 83–130

  2. Matsui M, Homma H (1994) Int J Biochem 26:1237–1247

    Article  CAS  PubMed  Google Scholar 

  3. Falany CN, Wilborn TW (1994) Adv Pharmacol 27:301–329

    Google Scholar 

  4. Raftogianis RB, Wood C, Otterness DM, van Loon JA, Weinshilboum RM (1997) Biochem Biophys Res Commun 239:298–304

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y, Spitz MR, Tsou AM-H, Zhang K, Makan N, Wu X (2002) Lung Cancer 35:137–142

    Article  CAS  PubMed  Google Scholar 

  6. Weinshilboum RM, Otterness DM (1994) Sulfotransferase enzymes. In: Kauffman FC (ed) Conjugation–deconjugation reactions in drug metabolism and toxicity. Chapter 22, “Handbook of experimental pharmacology” series, vol 112. Springer-Verlag, Berlin Heidelberg, pp 45–78

    Google Scholar 

  7. Falany CN (1991) Trends Pharmacol Sci 12:255–259

    Google Scholar 

  8. Leach M, Cameron E, Fite N, Stassinopoulos J, Palmreuter N, Beckmann JD (1999) Biochem Biophys Res Commun 261:815–819

    Google Scholar 

  9. Gamage NU, Duggleby RG, Barnett AC, Tresillian M, Latham CF, Liyou NE, McManus ME, Martin JL (2003) J Biol Chem 278:7655–7662

    Article  CAS  PubMed  Google Scholar 

  10. Otterness DM, Her C, Aksoy S, Kimura S, Wieben ED, Weinshilboum RM (1995) DNA Cell Biol 14:331–341

    CAS  PubMed  Google Scholar 

  11. Her C, Aksoy IA, Kimura S, Brandriff BF, Wasmuth JJ, Weinshilboum RM (1995) Genomics 29:16–23

    Article  CAS  PubMed  Google Scholar 

  12. Kakuta Y, Negishi M, Pedersen LC (1997) Nat Struct Biol 4:904–908

    Google Scholar 

  13. InsightII, Version 98.0 (1998) Accelrys Inc. San Diego, USA

  14. Homology User Guide (1999) Accelrys Inc. San Diego, USA

    Google Scholar 

  15. Lipman DJ, Pearson WR (1985) Science 227:1435–1441

    Google Scholar 

  16. Pearson WR, Lipman DJ (1988) Proc Natl Acad Sci USA 85:2444–2448

    CAS  PubMed  Google Scholar 

  17. Pearson WR (1990) Meth Enzymol 183:63–98

    CAS  PubMed  Google Scholar 

  18. Needleman SB, Wunch CD (1970) J Mol Biol 48:443–453

    CAS  PubMed  Google Scholar 

  19. Bernstein FC, Koetzle TF, Williams GJB, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) J Mol Biol 112:535–542

    CAS  PubMed  Google Scholar 

  20. Discover3 User Guide (1999) Accelrys Inc. San Diego, USA

  21. Luthy R, Bowie JU, Eisenberg D (1992) Nature 356:83–85

    Article  CAS  PubMed  Google Scholar 

  22. Profile-3D User Guide (1999) Accelrys Inc. San Diego, USA

  23. Binding Site Analysis User Guide (1999) Accelrys Inc. San Diego, USA

  24. Bidwell LM, Mcmanus ME, Gaedigk A, Kakuta Y, Negishi M, Pedersen JL, Martin L (1999) J Mol Biol 293:521–530

    Article  CAS  PubMed  Google Scholar 

  25. Li YF, Hata Y, Fujii T, Hisano T, Nishihara M, Kurihara T, Esaki N (1998) J Biol Chem 273:15035–15044

    Article  CAS  PubMed  Google Scholar 

  26. Affinity User Guide (1999) Accelrys Inc. San Diego, USA

  27. Tulik GR, Chodavarapu S, Edgar R, Giannunzio L, Langland A, Schultz B, Beckmann JD (2002) J Biol Chem 277:39296–39303

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (20333050, 20073014), Doctor Foundation by the Ministry of Education, Foundation for University Key Teacher by the Ministry of Education, Key subject of Science and Technology by the Ministry of Education of China, and Key subject of Science and Technology by Jilin Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze-Sheng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, QC., Li, ZS., Xiao, JF. et al. Homology modeling and PAPS ligand (cofactor) binding study of bovine phenol sulfotransferase. J Mol Model 11, 97–104 (2005). https://doi.org/10.1007/s00894-004-0225-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-004-0225-6

Keywords

Navigation