Skip to main content
Log in

QSPR modeling of the water solubility of diverse functional aliphatic compounds by optimization of correlation weights of local graph invariants

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The optimization of correlation weights scheme was used to model the water solubility (ln S) of diverse functional aliphatic compounds (n=193). The optimized descriptor formulated based on the data of a training set (n=96) generated statistically acceptable relations for the training set (r2=0.987), test set (n=97; r2=0.986) and combined set (r2=0.987). When the relation of ln S values with the optimized molecular descriptor formulated based on the data of the training set was used for the calculation of ln S values of the training set, r 2pred value was found to be satisfactory (0.988), which is indicative of the predictive potential of the scheme. The results indicate the promising potential of the optimization of correlation weights scheme in modeling studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harary F (1971) Graph theory. Addison-Wesley, Reading, MA

    Google Scholar 

  2. Balaban AT (ed) (1976) Chemical application of graph theory. Academic Press, London

    Google Scholar 

  3. Trinajstic N (1992) Chemical graph theory, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  4. Devillers J, Balaban AT (eds) (1999) Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach Science Publishers, The Netherlands

    Google Scholar 

  5. Ivanciuc O (1998) Structural similarity measures for database searching. In: Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF, Schniener PR (eds) Encyclopedia of computational chemistry. Wiley, Chichester

    Google Scholar 

  6. Boncher D, Rouvray DH (eds) (1991) Chemical graph theory. Introduction and Fundamentals. Academic Press, New York

    Google Scholar 

  7. Balaban AT (ed) (1997) From chemical topology to three-dimensional geometry. NewYork

  8. Kier LB, Hall LH (1976) Molecular connectivity in chemistry and drug research. Academic Press, New York

    Google Scholar 

  9. Kier LB, Hall LH (1986) Molecular connectivity in structure-activity analysis. Research Studies Press, Letchworth

    Google Scholar 

  10. Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  11. Kier LB (1989) Quant Struct-Act Relat 8:218–223

    Google Scholar 

  12. Randic M (1991) J Comput Chem 12:970–980

    Google Scholar 

  13. Randic M (1991) Chemom Intell Lab Syst 10:213–227

    Article  CAS  Google Scholar 

  14. Randic M (1991) J Chem Inf Comput Sci 31:311–320

    CAS  Google Scholar 

  15. Randic M (1992) J Chem Inf Comput Sci 32:686–692

    CAS  Google Scholar 

  16. Estrada E (1995) J Chem Inf Comput Sci 35:1022–1025

    CAS  Google Scholar 

  17. Amic D, Beslo D, Lucic D, Nikolic S, Trinajstic N (1998) J Chem Inf Comput Sci 38:819–822

    Article  CAS  Google Scholar 

  18. Randic M, Basak SC (1999) J Chem Inf Comput Sci 39:261–266

    Article  CAS  Google Scholar 

  19. Sinha DK, Basak SC, Mohanty RK, Basumallick IN (1999) Some aspects in mathematical chemistry. Visva-Bharati University Press, Santiniketan

    Google Scholar 

  20. Toropov AA, Toropova AP (1998) Russ J Coord Chem 24:81–85

    CAS  Google Scholar 

  21. Toropov AA, Toropova AP, Voropaeva NL, Ruban IN, Rashidova SS (1998) J Coord Chem 24:525–529

    CAS  Google Scholar 

  22. Toropov AA, Voropaeva NL, Ruban IN, Rashidova SS (1999) Polym Sci Ser A 41:975–985

    Google Scholar 

  23. Krenkel G, Castro EA, Toropov AA (2001) J Mol Struct (THEOCHEM) 542:107–113

    Article  CAS  Google Scholar 

  24. Mercader A, Castro EA, Toropov AA (2001) J Mol Model 7:1–5

    Google Scholar 

  25. Mercader A, Castro EA, Toropov AA (2000) Chem Phys Lett 330:612–623

    Article  CAS  Google Scholar 

  26. Krenkel G, Castro EA, Toropov AA (2001) J Mol Sci 2:57–65, http://www.mdpi.org/ijms

    CAS  Google Scholar 

  27. Marino DJG, Perruzo PJ, Castro EA, Toropov AA (2002) Internet Electron J Mol Des 1:115–133, http://www.biochempress.com

    CAS  Google Scholar 

  28. Duchowicz P, Castro EA, Toropov AA (2002) Computers and Chemistry 26:327–332

    Google Scholar 

  29. Toropov AA, Duchowicz P, Castro EA (2003) Int J Mol Sci 4:272–283, http://www.mdpi.org/ijms

    CAS  Google Scholar 

  30. Perruzo PJ, Marino DJG, Castro EA, Toropov AA (2003) Internet Electron J Mol Des 2:334–347, http://www.biochempress.com

    Google Scholar 

  31. Toropov AA, Schultz TW (2003) J Chem Inf Comput Sci 43:560–567

    Article  CAS  PubMed  Google Scholar 

  32. Toropov AA, Roy K (2004) J Chem Inf Comput Sci 44:179–186

    Article  CAS  PubMed  Google Scholar 

  33. Kubinyi H (1995) Quantitative structure-activity relationships. In: Wolff ME (ed) Burger’s medicinal chemistry and drug discovery, 5th edn, vol 1. John Wiley New York, pp 497–571

  34. Ghose AK, Crippen GM (1987) J Chem Inf Comput Sci 27:21–35

    CAS  PubMed  Google Scholar 

  35. Ghose AK, Viswanadhan VN, Wendoloski JJ (1998) J Phys Chem 102:3762–3772

    Article  CAS  Google Scholar 

  36. Bodor N, Gabanyi Z, Wong C-K (1989) J Am Chem Soc 111:3783–3786

    CAS  Google Scholar 

  37. Klopman G, Wang S (1991) J Comput Chem 12:1025–1032

    Google Scholar 

  38. Moriguchi I, Hirono S, Liu Q, Nakagome I, Matsushita Y (1992) Chem Pharm Bull (Tokyo) 40:127–130

    CAS  Google Scholar 

  39. Saxena AK (1995) Quant Struct-Act Relat 14:142–150

    CAS  Google Scholar 

  40. Benet LZ, Kroetz DL, Sheiner LB (1996) In: Hardman JG, Limbard LE, Molinoff PB, Ruddon RW, Goodman Gilman A (eds) Goodman and Gilman’s The pharmacological basis of therapeutics. Mc-Graw Hill, New York, pp 3–27

  41. Ferreira MM (2001) Chemosphere 44:125–146

    Article  CAS  PubMed  Google Scholar 

  42. Khadikar PV, Mandloi F, Bajaj AV, Joshi S (2003) Bioorg Med Chem Lett 13:419–422

    Google Scholar 

  43. Katritzky AR, Wang Y, Sild S, Tamm T (1998) J Chem Inf Comput Sci 38:720–725

    Article  CAS  Google Scholar 

  44. Yin C, Liu X, Guo W, Lin T, Wang X, Wang L (2002) Water Res 36:2975–2982

    Article  CAS  PubMed  Google Scholar 

  45. Chen XQ, Cho SJ, Li Y, Venkatesh S (2002) J Pharm Sci 91:1838–1852

    Article  CAS  PubMed  Google Scholar 

  46. Roy K, Saha A (2003) Internet Electron J Mol Des 2:475–491, http://www.biochempress.com

    CAS  Google Scholar 

  47. Yang F, Wang ZD Huang YP (2004) J Comput Chem 25:881–887

    Article  CAS  PubMed  Google Scholar 

  48. Wanchana S, Yamashita F, Hashida M (2002) Pharmazie 57:127–129

    CAS  PubMed  Google Scholar 

  49. Gao H, Shanmugasundaram V, Lee P (2002) Pharm Res 19:497–503

    Article  CAS  PubMed  Google Scholar 

  50. Puri S, Chickos JS, Welsh WJ (2003) J Chem Inf Comput Sci 43:55–62

    Article  CAS  PubMed  Google Scholar 

  51. Liu R, So SS (2001) J Chem Inf Comput Sci 41:1633–1639

    Article  CAS  PubMed  Google Scholar 

  52. Butina D, Gola JM (2003) 43:837–841

  53. Hansch C, Quinlan JE, Lawrence GL (1968) J Org Chem 33:347–350

    CAS  Google Scholar 

  54. The program for optimization of correlation weights was developed in PASCAL by Toropov AA

  55. The GW-BASIC programs RRR98, KRPRES1 and KRPRES2 were developed by Kunal Roy (1998) and standardized using known data sets.

  56. Snedecor GW, Cochran WG (1967) Statistical Methods. Oxford& IBH Publishing Co. Pvt. Ltd., New Delhi, pp 381–418

    Google Scholar 

  57. Kier LB, Hall LH (1992) Atom description in QSAR models: development and use of an atom level index. In: Testa B (ed) Advances in drug research, vol 22. Academic Press, New York, pp 1–38

    Google Scholar 

  58. Wold S, Eriksson L (1995) Validation tools. In: van de Waterbeemd H (ed) Chemometric methods in molecular design. VCH, Weinheim, pp 309–318

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, K., Toropov, A.A. QSPR modeling of the water solubility of diverse functional aliphatic compounds by optimization of correlation weights of local graph invariants. J Mol Model 11, 89–96 (2005). https://doi.org/10.1007/s00894-004-0224-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-004-0224-7

Keywords

Navigation