Skip to main content
Log in

3D QSAR studies on peroxisome proliferator-activated receptor γ agonists using CoMFA and CoMSIA

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The peroxisome proliferator-activated receptors (PPARs) have increasingly become attractive targets for developing novel anti-type 2 diabetic drugs. We employed comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) to study three-dimensional quantitative structure–activity relationship (3D QSAR) based on existing agonists of PPARγ (including five thiazolidinediones and 74 tyrosine-based compounds). Predictive 3D QSAR models with conventional r 2 and cross-validated coefficient (q 2) values up to 0.974 and 0.642 for CoMFA and 0.979 and 0.686 for COMSIA were established using the SYBYL package. These models were validated by a test set containing 18 compounds. The CoMFA and CoMSIA field distributions are in general agreement with the structural characteristics of the binding pockets of PPARγ, which demonstrates that the 3D QSAR models built here are very useful in predicting activities of novel compounds for activating PPARγ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kersten S, Desvergne B, Wahli W (2000) Nature 405:421–424

    CAS  PubMed  Google Scholar 

  2. Willson TM, Brown PJ, Sternbach DD, Henke BR (2000) J Med Chem 43:527–550

    Article  CAS  PubMed  Google Scholar 

  3. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA (1995) J Biol Chem 270:12953–12956

    CAS  PubMed  Google Scholar 

  4. Issemann I, Green S (1990) Nature 347:645–650

    CAS  PubMed  Google Scholar 

  5. Wang YX, Lee CH, Tiep SR, Yu T, Ham J, Kang H, Evans RM (2003) Cell 113:159-170

    CAS  PubMed  Google Scholar 

  6. Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R, Rosenfeld MG, Willson TM, Glass CK, Milburn MV (1998) Nature 395:137–143

    CAS  PubMed  Google Scholar 

  7. Uppenberg J, Svensson C, Jaki M, Bertilsson G, Jendeberg L, Berkenstam A (1998) J Biol Chem 273:31108–31112

    CAS  PubMed  Google Scholar 

  8. Xu HE, Lambert MH, Montana VG, Plunket GM, Moore LB, Collins JL, Oplinger JA, Kliewer SA, Gampe RT, McKee DD, Moore JT, Willson TM (2001) PNAS 98:13919–13924

    Article  CAS  PubMed  Google Scholar 

  9. Henke BR, Blanchard SG, Brackeen MF, Brown KK, Cobb JE, Collins JL, Harrington WW, Hashim MA, Hull-Ryde EA, Kaldor I, Kliewer SA, Lake DH, Leesnitzer LM, Lehmann JM, Lenhard JM, Orband-Miller LA, Miller JF, Mook RA, Noble SA, Oliver W, Parks DJ, Plunket KD, Szewczyk JR, Willson TM (1998) J Med Chem 41:5020–5036

    Article  CAS  PubMed  Google Scholar 

  10. Collins JL, Blanchard SG, Boswell GE, Charifson PS, Cobb JE, Henke BR, Hull-Ryde EA, Kazmierski WM, Lake DH, Leesnitzer LM, Lehmann J, Lenhard JM, Orband-Miller LA, Gray-Nunez Y, Parks DJ, Plunkett KD, Tong WQ (1998) J Med Chem 41:5037–5054

    Article  CAS  PubMed  Google Scholar 

  11. Cobb JE, Blanchard SG, Boswell EG, Brown KK, Charifson PS, Cooper JP, Collins JL, Dezube M, Henke BR, Hull-Ryde EA, Lake DH, Lenhard JM, Oliver W, Oplinger J, Pentti M, Parks DJ, Plunker KD, Tong WL (1998) J Med Chem 41:5055–5069

    Article  CAS  PubMed  Google Scholar 

  12. Henke BR, Adkison KK, Blanchard SG, Leesnitzer LM, Robert A, Mook J, Plunket DK, Ray JA, Roberson C, Unwalla R, Willson TM (1999) Bioorg Med Chem Lett 9:3329–3334

    Article  CAS  PubMed  Google Scholar 

  13. Buckle DR, Cantello BCC, Cawthorne MA, Coyle PJ, Dean DK, Faller A, Haigh D, Hindley RM, Jefcott LJ, Lister CA, Pinto IL, Rami HK, Smith DG, Smith SA (1996) Bioorg Med Chem Lett 6:2121–2126

    Article  CAS  Google Scholar 

  14. Buckle DR, Cantello BCC, Cawthorne MA, Coyle PJ, Dean DK, Faller A, Haigh D, Hindley RM, Jefcott LJ, Lister CA, Pinto IL, Rami HK, Smith DG, Smith SA (1996) Bioorg Med Chem Lett 6:2127–2130

    Article  CAS  Google Scholar 

  15. Shinkai H, Onogi S, Tanaka M, Shibata T, Wao M, Wakitani K, Uchida I (1998) J Med Chem 41:1927–1933

    Article  CAS  PubMed  Google Scholar 

  16. Sauerberg P, Pettersson I, Jeppesen L, Bury PS, Mogensen JP, Wassermann K, Brand CL, Sturis J, Woldike HF, Fleckner J, Andersen AST, Mortensen SB, Svensson LA, Rasmussen HB, Lehmann SV, Polivka Z, Sindelar K, Panajotova V, Ynddal L, Wulff EM (2002) J Med Chem 45:789–804

    Article  CAS  PubMed  Google Scholar 

  17. Cramer RD, Patterson DE, Bunce JD (1988) J Am Chem Soc 110:5959–5967

    CAS  Google Scholar 

  18. Klebe G, Abraham U, Mietzner T (1994) J Med Chem 37:4130–4146

    CAS  PubMed  Google Scholar 

  19. Klebe G (1998) Perspect Drug Discovery Des 12:87–104

    Article  Google Scholar 

  20. Böhm M, Stürzebecher J, Klebe G (1999) J Med Chem 42:458–477

    PubMed  Google Scholar 

  21. Kurogi Y (1999) Drug Des Discov 16:109–118

    CAS  PubMed  Google Scholar 

  22. Kulkarni SS, Gediya LK, Kulkarni VM (1999) Bioorgan Med Chem 7:1475–1485

    Article  CAS  Google Scholar 

  23. SYBYL 681 (2001) Tripos Inc, 1699 Hanley Road, St Louis, MO 63144, USA

  24. Parks DJ, Tomkinson NCO, Villeneuve MS, Blanchard SG, Willson TM (1998) Bioorg Med Chem Lett 8:3657–3658

    Article  CAS  PubMed  Google Scholar 

  25. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242

    PubMed  Google Scholar 

  26. Gampe Jr RT, Montana VG, Lambert MH, Miller AB, Bledsoe RK, Milburn MV, Kliewer SA, Willson TM, Xu HE (2000) Mol Cell 5:545–555

    CAS  PubMed  Google Scholar 

  27. Clark M, Cramer RD, van Opdenbosh N (1989) J Comput Chem 10:982–1012

    CAS  Google Scholar 

  28. Stewart JJ (1990) J Comput-Aided Mol Des 4:1–105

    Google Scholar 

  29. Kearsley SK, Smith GM (1990) Tetrahedron Comput Methodol 3:615–633

    CAS  Google Scholar 

  30. Weatherman RV, Fletterick RJ, Scanlan TS (1999) Annu Rev Biochem 68:559–581

    Article  CAS  PubMed  Google Scholar 

  31. Xu HE, Lambert MH, Montana VG, Plunket GM, Moore LB, Collins JL, Oplinger JA, Kliewer SA, Gampe RT, McKee DD, Moore JT, Willson TM (2001) PNAS 98:13919–13924

    Article  CAS  PubMed  Google Scholar 

  32. Grossman SL, Lessem L (1997) Exp Opin Ivest Drugs 6:1025–1040

    CAS  Google Scholar 

  33. Henry RR (1997) Endocrinol Metab Clin North Am 26:553–573

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial supports from the national “863” project of People’s Republic of China and project of “Most Important Biopharmaceutical Projects” by Guangdong province government in China. The authors also want to give special thanks to Drs Zhiqiang Ning and Weiming Hu for their support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Ping Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, C., Xie, A., Zhou, J. et al. 3D QSAR studies on peroxisome proliferator-activated receptor γ agonists using CoMFA and CoMSIA. J Mol Model 10, 165–177 (2004). https://doi.org/10.1007/s00894-003-0175-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-003-0175-4

Keywords

Navigation