Skip to main content
Log in

A quantitative structure–antifungal activity relationship study of oxygenated aromatic essential oil compounds using data structuring and PLS regression analysis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Twenty two oxygenated aromatic essential oil compounds were chosen for the study of the antifungal activity against two wood-decaying fungi, the white-rot Trametes versicolor, which mainly metabolizes lignin, and the brown-rot Coniophoha puteana, which digests cellulose in plant cell walls. Minimal inhibitory concentrations (MICs) were determined by the agar dilution method, using dimethyl sulfoxide (DMSO) as the solvent for the selected compounds and potato-dextrose agar (PDA) as the growth medium for both fungi. The MICs were then used to generate a tree structure, which represents the structuring of the essential oil compounds by the nature and position of the substituents in their aromatic rings, and as dependent variables (log(1/MIC)) in the QSAR analysis. Data structuring proved that a relationship between the molecular structures of the essential oil compounds and their antifungal activity exists, and the hypotheses derived therefrom were complemented by performing a QSAR analysis using the partial least squares (PLS) method. Statistically significant PLS models were obtained with the 1-octanol–water partition coefficient (C log P), the energy of the highest occupied molecular orbital (E HOMO), and the number of hydrogen-bond donor atoms in the molecules of the compounds studied (Donor) for T. versicolor and with C log P and the fractional negative surface area (FNSA1) for C. puteana.

Figure Tree structure representing the structuring of the oxygenated aromatic essential-oil compounds by the position and nature of their substituents in the aromatic ring

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Didry N, Dubreuil L, Pinkas M (1994) Pharm Acta Helv 69:25–28

    Article  CAS  PubMed  Google Scholar 

  2. Scora KM, Scora RW (1998) J Basic Microbiol 38:405–413

    Article  CAS  Google Scholar 

  3. Ettayebi K, El Yamani J, Rossi-Hassani BD (2000) FEMS Microbiol Lett 183:191–195

    Article  CAS  PubMed  Google Scholar 

  4. Ultee A, Kets EPW, Smid EJ (1999) Appl Environ Microbiol 65:4606–4610

    CAS  PubMed  Google Scholar 

  5. Helander IM, Alakomi HL, Latva-Kala K, Mattila-Sandholm T, Pol I, Smid EJ, Gorris LGM, von Wright A (1998) J Agric Food Chem 46:3590–3595

    Article  CAS  Google Scholar 

  6. Kim J, Marshall MR, Wei C (1995) J Agric Food Chem 43:2839–2845

    CAS  Google Scholar 

  7. Zemek J, Valent M, Pódová M, Košíková B, Joniak D (1987) Folia Microbiol 32:421–425

    CAS  Google Scholar 

  8. Boonchird C, Flegel TW (1982) Can J Microbiol 28:1235–1241

    CAS  PubMed  Google Scholar 

  9. Majcherczyk A, Johannes C, Hüttermann A (1999) Appl Microbiol Biotechnol 51:267–276

    Article  Google Scholar 

  10. Jolivalt C, Raynal A, Caminade E, Kokel B, Le Goffic F, Mougin C (1999) Appl Microbiol Biotechnol 51:676–681

    Article  CAS  Google Scholar 

  11. Johannes C, Majcherczyk A, Hüttermann A (1998) J Biotechnol 61:151–156

    Article  CAS  Google Scholar 

  12. Henriksson G, Johansson G, Pettersson G (2000) J Biotechnol 78:93–113

    Article  CAS  PubMed  Google Scholar 

  13. Green III F, Highley TL (1997) Int Biodeterior Biodegrad 39:113–124

    Article  CAS  Google Scholar 

  14. Hyde SM, Wood PM (1997) Microbiol – UK 143:259–266

    Google Scholar 

  15. Ander P (1994) FEMS Microbiol Rev 13:297–312

    Article  CAS  Google Scholar 

  16. Wang X, Dong Y, Wang L, Han S (2001) Chemosphere 44:447–455

    Article  CAS  PubMed  Google Scholar 

  17. Lu GH, Yuan X, Zhao YH (2001) Chemosphere 44:437–440

    Article  CAS  PubMed  Google Scholar 

  18. Hansch C, McKarns SC, Smith CJ, Doolittle DJ (2000) Chem–Biol Interact 127:61–72

    Google Scholar 

  19. Lien EJ, Ren S, Bui HH, Wang R (1999) Free Rad Biol Med 26:285–294

    Article  CAS  PubMed  Google Scholar 

  20. Hayashi M, Nakamura Y, Higashi K, Kato H, Kishida F, Kaneko H (1999) Toxicol in Vitro 13:915–922

    Article  CAS  Google Scholar 

  21. Shapiro S, Guggenheim B (1998) Quant Struct–Act Relat 17:327–337

    Google Scholar 

  22. Shapiro S, Guggenheim B (1998) Quant Struct–Act Relat 17:338–347

    Google Scholar 

  23. Dearden JC (1985) Environ Health Perspect 61:203–228

    CAS  PubMed  Google Scholar 

  24. Sakurada J, Sekiguti R, Sato K, Hosoya T (1990) Biochemistry 29:4093–4098

    CAS  PubMed  Google Scholar 

  25. Geban Ö, Ertepinar H, Yurtsever M, Özden S, Gümüs F (1999) Eur J Med Chem 34:753–758

    Article  CAS  Google Scholar 

  26. Cowan MM (1999) Clin Microbiol Rev 12:564–582

    CAS  PubMed  Google Scholar 

  27. Brock TD, Madigan MT, Martinko JM, Parker J (1994) Biology of microorganisms. Prentice-Hall, Engelwood Cliffs, N.J., p 909

  28. Voda K, Boh B, Vrtačnik M, Pohleven F (2003) Int Biodeterior Biodegrad 51:51-59

    Article  CAS  Google Scholar 

  29. Kornhauser A, Boh B (1992) Information support for research and development in biotechnological applications. In: DaSilva EJ, Ratledge C, Sasson A (eds) Biotechnology: economic and social aspects. Cambidge University Press, Cambridge, pp 309–353

  30. Tetko IV, Tanchuk VY, Kasheva TN, Villa AEP (2001) J Chem Inf Comput Sci 41:246–252

    Article  CAS  PubMed  Google Scholar 

  31. PCModels—CLOGP 4.72 and CMR 4.71 [online] (2001) Daylight Chemical Information Systems Inc. Available on the internet:http://www.daylight.com/jj-cgi/pcmodels.cgi

  32. SYBYL 6.7.2 (2001) Tripos Inc, 1699 South Hanley Rd, St Louis, MO 63144, USA

  33. Knobloch K, Pauli A, Iberl B, Weignd H, Weis N (1989) J Essential Oil Res 1:119–128

    CAS  Google Scholar 

  34. Hansch C, Fujita T (1964) J Am Chem Soc 86:1616–1626

    CAS  Google Scholar 

  35. Mester T, Tien M (2000) Int Biodeterior Biodegrad 46:51–59

    Article  CAS  Google Scholar 

  36. Cullen D (1997) J Biotechnol 53:273–289

    CAS  PubMed  Google Scholar 

  37. Bearden AP, Schultz TW (1997) Environ Toxicol Chem 16:1311–1217

    CAS  Google Scholar 

  38. Schultz TW, Holcombe GW, Phipps GL (1986) Ecotoxicol Environ Safety 12:146–153

    CAS  PubMed  Google Scholar 

  39. Stanton DT, Jurs PC (1990) Anal Chem 62:2323–2329

    CAS  Google Scholar 

  40. Clementi S, Wold S (1995) How to choose the proper statistical method? In: van de Waterbeemd H (ed) Chemometric methods in molecular design. VCH, Weinheim, pp 319–338

  41. Tong W, Lowis DR, Perkins R, Chen Y, Welsh WJ, Goddette DW, Heritage TW, Sheenan DM (1998) J Chem Inf Comput Sci 38:669–677

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Dr. Franc Pohleven and Andreja Klinar of the Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Slovenija for their help and cooperation during the experimental part of this study. Our sincere thanks also goes to Tripos, Inc. (Germany) for allowing us the use of SYBYL 6.7.2 for a time-limited evaluation period. The research was co-founded by the Slovene Ministry of Education, Science and Sport.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karmen Voda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voda, K., Boh, B. & Vrtačnik, M. A quantitative structure–antifungal activity relationship study of oxygenated aromatic essential oil compounds using data structuring and PLS regression analysis. J Mol Model 10, 76–84 (2004). https://doi.org/10.1007/s00894-003-0174-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-003-0174-5

Keywords

Navigation