Journal of Molecular Modeling

, Volume 9, Issue 6, pp 408–414 | Cite as

AM1* parameters for phosphorus, sulfur and chlorine

  • Paul Winget
  • Anselm H. C. Horn
  • Cenk Selçuki
  • Bodo Martin
  • Timothy Clark
Original Paper

Abstract

An extension of the AM1 semiempirical molecular orbital technique, AM1*, is introduced. AM1* uses AM1 parameters and theory unchanged for the elements H, C, N, O and F. The elements P, S and Cl have been reparameterized using an additional set of d orbitals in the basis set and with two-center core–core parameters, rather than the Gaussian functions used to modify the core–core potential in AM1. Voityuk and Rösch’s AM1(d) parameters have been adopted unchanged for AM1* with the exception that new core–core parameters are defined for Mo–P, Mo–S and Mo–Cl interactions. Thus, AM1* gives identical results to AM1 for compounds with only H, C, N, O, and F, AM1(d) for compounds containing Mo, H, C, N, O and F only, but differs for molybdenum compounds containing P, S or Cl. The performance and typical errors of AM1* are discussed.

Keywords

Semiempirical parameterization AM1* NDDO 

Supplementary material

Table 2. Heats of formation (experimental, DFT, AM1*, AM1, PM3, PM5 and MNDO/d, all in kcal mol-1) obtained for the parameterization compounds.

table2.pdf (913 kb)
(PDF 935 KB)

Table 4. Dipole moments (experimental, DFT, AM1*, AM1, PM3, PM5 and MNDO/d, all in Debye) obtained for the parameterization compounds.

table4.pdf (865 kb)
(PDF 885 KB)

Table 5. Experimental and Koopmans’ theorem ionization potentials (AM1*, AM1, PM3, PM5 and MNDO/d, all in eV) obtained for the parameterization compounds.

table5.pdf (876 kb)
(PDF 897 KB)

Table 6. Summary of the errors in bond lengths (Å) for DFT, AM1*, AM1, PM3, PM5 and MNDO/d .

table6.pdf (861 kb)
(PDF 882 KB)

Table 7. Summary of the errors in bond angles (°) for DFT, AM1*, AM1, PM3, PM5 and MNDO/d.

table7.pdf (869 kb)
(PDF 882 KB)

Table S1. The geometrical parameters used to parameterize AM1*, and the calculated DFT and AM1* values

stable1.pdf (68 kb)
(PDF 70 KB)

Table S2. The topomeric isomerization energetic barrier heights used to parameterize the Mo-P parameters

stable2.pdf (11 kb)
(PDF 12 KB)

References

  1. 1.
    Clark T (2000) J Mol Struct (Theochem) 530:1–10Google Scholar
  2. 2.
    Beck B, Carpenter JE, Horn A, Clark T (1998) J Chem Inf Comput Sci 38:1214–1217CrossRefGoogle Scholar
  3. 3.
    Stewart JJP (1997) Theochem 401:195–205CrossRefGoogle Scholar
  4. 4.
    Stewart JJP (1996) Int J Quantum Chem 58:133–146CrossRefGoogle Scholar
  5. 5.
    Gogonea V, Suarez D, van der Vaart A, Merz Jr K (2001) Curr Opin Struct Biol 11:217–223CrossRefPubMedGoogle Scholar
  6. 6.
    Gregersen BA, Lopez X, York DM (2003) J Am Chem Soc 125:7178–7179CrossRefPubMedGoogle Scholar
  7. 7.
    Pople JA, Santry DP, Segal GA (1965) J Chem Phys 43:S129–S135Google Scholar
  8. 8.
    Thiel W, Voityuk AA (1992) Int J Quantum Chem 44:807–829Google Scholar
  9. 9.
    Thiel W, Voityuk AA (1992) Theor Chim Acta 81:391–404Google Scholar
  10. 10.
    Thiel W, Voityuk AA (1996) Theor Chim Acta 93:315CrossRefGoogle Scholar
  11. 11.
    Thiel W, Voityuk AA (1994) Theochem 119:141–154CrossRefGoogle Scholar
  12. 12.
    Thiel W, Voityuk AA (1996) J Phys Chem 100:616–626CrossRefGoogle Scholar
  13. 13.
    Thiel W (1998) In: Schleyer PvRS, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer III HF, Schreiner PR (eds) Encyclopedia of computational chemistry, vol 3. Wiley, Chichester, pp 1604–1605Google Scholar
  14. 14.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909Google Scholar
  15. 15.
    Holder AJ (1998) In: Schleyer PvRS, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer III HF, Schreiner PR (eds) Encyclopedia of computational chemistry, vol 1. Wiley, Chichester, pp 8–11Google Scholar
  16. 16.
    Stewart JJP (1989) J Comput Chem 10:209–220Google Scholar
  17. 17.
    Stewart JJP (1989) J Comput Chem 10:221–264Google Scholar
  18. 18.
    Stewart JJP (1998) In: Schleyer PvRS, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer III HF, Schreiner PR (eds) Encyclopedia of computational chemistry, vol 3. Wiley, Chichester, p 2080Google Scholar
  19. 19.
    Voityuk AA, Rösch N (2000) J Phys Chem A 104:4089–4094CrossRefGoogle Scholar
  20. 20.
    Wavefunction, Inc. (http://www.wavefun.com)Google Scholar
  21. 21.
    (a) Stewart JJP (2003) AM1 and PM3: submitted to J Mol Model; (b) Stewart JJP (2002) PM5: CAChe Group, Fujitsu America Inc, Mopac (http://www.cachesoftware.com/Mopac/index.shtml)Google Scholar
  22. 22.
    Brothers EN, Merz Jr K (2002) J Phys Chem B 106:2779–2785CrossRefGoogle Scholar
  23. 23.
    Stewart JJP (2000) Pure Appl Chem 72:1449–1452Google Scholar
  24. 24.
    Dewar MJS, Thiel W (1977) J Am Chem Soc 99:4899–4907Google Scholar
  25. 25.
    Thiel W (1998) In: Schleyer PvRS, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer III HF, Schreiner PR (eds) Encyclopedia of computational chemistry, vol 3. Wiley, Chichester, p 1599Google Scholar
  26. 26.
    Lopez X, York DM (2003) Theor Chem Accounts 109:149–159Google Scholar
  27. 27.
    Klebe G (1990) Struct Chem 1:597–616Google Scholar
  28. 28.
    Voityuk AA (2002) personal communicationGoogle Scholar
  29. 29.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratman RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu C, Liashenko A, Piskorz P, Komaromi, I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Gonzales C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98. Gaussian, Pittsburgh, Pa.Google Scholar
  30. 30.
    Becke AD (1996) J Chem Phys 104:1040–1046CrossRefGoogle Scholar
  31. 31.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627Google Scholar
  32. 32.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  33. 33.
    Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200–206Google Scholar
  34. 34.
    Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261Google Scholar
  35. 35.
    Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PvRS (1983) J Comput Chem 4:294–301Google Scholar
  36. 36.
    McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648CrossRefGoogle Scholar
  37. 37.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654CrossRefGoogle Scholar
  38. 38.
    Wachters AJH (1970) J Chem Phys 52:1033–1036Google Scholar
  39. 39.
    Hay PJ (1977) J Chem Phys 66:4377–4384CrossRefGoogle Scholar
  40. 40.
    Raghavachari K, Trucks GW (1989) J Chem Phys 91:2457–2460CrossRefGoogle Scholar
  41. 41.
    Binning Jr RC, Curtiss LA (1990) J Comput Chem 11:1206–1216Google Scholar
  42. 42.
    Curtiss LA, McGrath MP, Blaudeau J-P, Davis NE, Binning Jr RC, Radom L (1995) J Chem Phys 103:6104–6113CrossRefGoogle Scholar
  43. 43.
    McGrath MP, Radom L (1991) J Chem Phys 94:511–516CrossRefGoogle Scholar
  44. 44.
    Topf C, Clark T, Heinemann FW, Hennemann M, Kummer S, Pritzkow H, Zenneck U (2002) Angew Chem, Int Ed Engl 41:4047–4052Google Scholar
  45. 45.
    Topf C, Clark T, Heinemann FW, Hennemann M, Kummer S, Pritzkow H, Zenneck U (2002) Angew Chem 114:4221–4226CrossRefGoogle Scholar
  46. 46.
    Broyden CG (1970) J Inst Math Appl 6:222Google Scholar
  47. 47.
    Fletcher R (1970) Comput J 13:317Google Scholar
  48. 48.
    Goldfarb D (1970) Math Comput 24:23Google Scholar
  49. 49.
    Shanno DF (1970) Math Comput 24:647Google Scholar
  50. 50.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in fortran. Cambridge University Press, CambridgeGoogle Scholar
  51. 51.
    Clark T, Alex A, Beck B, Burkhardt F, Chandrasekhar J, Gedeck P, Horn AHC, Hutter M, Martin B, Rauhut G, Sauer W, Schindler T, Steinke T (2003) VAMP 8.1. Accelrys Inc, San DiegoGoogle Scholar
  52. 52.
    Stewart JJP (2002) LinMopac 2002. Fujitsu Ltd, FQS Poland Sp z o o, KrakowGoogle Scholar
  53. 53.
    Winget P, Clark T (2003) J Comput Chem submittedGoogle Scholar
  54. 54.
    Marynick DS, Lipscomb WN (1982) Proc Natl Acad Sci U S A 79:1341–1345Google Scholar
  55. 55.
    Halgren TA, Lipscomb WN (1973) J Chem Phys 58:1569–1591Google Scholar
  56. 56.
    Marynick DS (1998) In: Schleyer PvRS, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer III HF, Schreiner PR (eds) Encyclopedia of computational chemistry, vol 3. Wiley, Chichester, pp 2153–2160Google Scholar
  57. 57.
    Martin B, Winget P, Horn AHC, Selcuki C, Clark T (2003) in preparationGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Paul Winget
    • 1
  • Anselm H. C. Horn
    • 1
  • Cenk Selçuki
    • 1
  • Bodo Martin
    • 1
  • Timothy Clark
    • 1
  1. 1.Computer-Chemie-CentrumFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations