Skip to main content
Log in

Conformational stability and normal coordinate analyses for 1-halovinyl azides CH2=CX–NNN (X is F, Cl and Br)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The conformational behavior of 1-halovinyl azides CH2=CX–NNN (X=F, Cl and Br) were investigated by DFT-B3LYP and ab initio MP2 calculations with the 6-311++G** basis set. The molecules were predicted to exist predominantly in the trans (the vinyl CH2=CH– and the azide –NNN groups are trans to each other) conformation. The relative energy between cis and trans were calculated to decrease in order: bromide>chloride>fluoride. Full optimization was performed at the ground and transition states in the molecule at both MP2 and B3LYP levels. The barrier to internal rotation around the C–N single bond in the three molecules was calculated to be about 4–5 kcal mol−1. The vibrational frequencies were computed at the DFT-B3LYP level and the calculated infrared and Raman spectra of the cistrans mixture of the three molecules were plotted. Complete vibrational assignments were made on the basis of normal coordinate calculations for both stable conformers of the three molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. Badawi HM, Forner W, Al-Saadi A (2001) J Mol Struct (Theochem) 535:183–197

    Google Scholar 

  2. Badawi HM, (2002) J Mol Struct (Theochem) 579:11–19

    Google Scholar 

  3. Badawi HM, (2002) J Mol Struct (Theochem) 584:201–210

    Google Scholar 

  4. Ford RG (1977) J Mol Spectrosc 65:273–279

    CAS  Google Scholar 

  5. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratman RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu C, Liashenko A, Piskorz P, Komaromi, I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Gonzales C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98. Gaussian, Pittsburgh, Pa.

  6. Wilson EB, Decius JC, Cross PC (1995) Molecular vibrations. McGraw-Hill, New York

  7. Chantry GW (1997) In: Anderson A (ed) The Raman effect, vol 1. Marcel Dekker, New York, chapter 2

  8. Forner W, Badawi HM (2001) J Mol Model 7:288–305

    Google Scholar 

  9. Hassner A, Stern M (1986) Angew Chem Int Ed Engl 25:478–479

    Google Scholar 

  10. Yu KL, Johnson RL (1987) J Org Chem 52:2051–2059

    CAS  Google Scholar 

  11. Scriven EFV, Turnabull K (1988) Chem Rev 88:297–368

    CAS  Google Scholar 

  12. Lowe-Ma CK, Nissan RA, Wilson WS (1990) J Org Chem 55:3755–3761

    CAS  Google Scholar 

  13. Kamiya N, Shiro Y, Iwata T, Iizulka T, Iwasaki H (1991) J Am Chem Soc 113:1826–1829

    CAS  Google Scholar 

  14. Aube J, Milligan GL (1991) J Am Chem Soc 113:8965–8966

    CAS  Google Scholar 

  15. Norris P, Horton D, Levine BR (1995) Tetrahedron Lett 36:7811–7814

    Article  CAS  Google Scholar 

  16. Milligan GL, Mossman CJ, Aube J (1995) J Am Chem Soc 117:10449–10459

    CAS  Google Scholar 

  17. Haist R, Mack HG, Vedova COD, Cutin EH, Oberhammer H (1998) J Mol Struct 445:197–205

    Article  CAS  Google Scholar 

  18. Dyke JM, Groves AP, Morris A, Ogden JS (1999) J Phys Chem A 103:8239–8245

    Article  CAS  Google Scholar 

  19. Rauhut G, Eckert F (1999) J Phys Chem A 103:9086–9092

    Article  CAS  Google Scholar 

  20. McIntosch MB, Hartle TJ, Allcock HR (1999) J Am Chem Soc 121:884–885

    Article  Google Scholar 

  21. McClelland RA, Ahmed A, Dicks AP, Licence VE (1999) J Am Chem Soc 121:3303–3310

    Article  CAS  Google Scholar 

  22. Chahona L, Cai H, Fishbein JC (1999) J Am Chem Soc 121:5161–5169

    Article  Google Scholar 

  23. Varotsis C, Vamvouka M (1999) J Phys Chem B 103:3942–3946

    Article  CAS  Google Scholar 

  24. Li L, Wang C, Long Z, FU S (2000) J Polym Sci Part A Polym Chem 38:4519–4523

    Article  CAS  Google Scholar 

  25. Durig JR, Berry RJ, Groner P (1987) J Chem Phys 87:6303–6322

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the support of this work by King Fahd University of Petroleum and Minerals. This work is taken in part from the thesis of K.S. Al-Ghamdi that was submitted in February 2003 to Chemistry Department at KFUPM, in partial fulfillment of the M.S. Degree.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan M. Badawi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badawi, H.M., Förner, W. & Al-Ghamdi, K.S. Conformational stability and normal coordinate analyses for 1-halovinyl azides CH2=CX–NNN (X is F, Cl and Br). J Mol Model 9, 355–364 (2003). https://doi.org/10.1007/s00894-003-0133-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-003-0133-1

Keywords

Navigation