Skip to main content
Log in

Homology model of human corticosteroid binding globulin: a study of its steroid binding ability and a plausible mechanism of steroid hormone release at the site of inflammation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Corticosteroid binding globulin (CBG) and thyroxin binding globulin (TBG) both belong to the same SERPIN superfamily of serine–proteinase inhibitors but in the course of evolution CBG has adapted to its new role as a transport agent of insoluble hormones. CBG binds corticosteroids in plasma, delivering them to sites of inflammation to modify the inflammatory response. CBG is an effective drug carrier for genetic manipulation, and hence there is immense biological interest in the location of the hormone binding site. The crystal structure of human CBG (hCBG) has not been determined, but sequence alignment with other SERPINs suggests that it conforms as a whole to the tertiary structure shared by the superfamily. Human CBG shares 52.15% and 55.50% sequence similarity with α1-antitrypsin and α1-antichymotrypsin, respectively. Multiple sequence alignment among the three sequences shows 73 conserved regions. The molecular structures of α1-antitrypsin and α1-antichymotrypsin, the archetype of the SERPIN superfamily, obtained by X-ray diffraction methods are used to develop a homology model of hCBG. Energy minimization was applied to the model to refine the structure further. The homology model of hCBG contains 371 residues (His13 to Val383 ). The secondary structure comprises 11 helices, 15 turns and 11 sheets. The putative corticosteroid binding region is found to exist in a pocket between β-sheets S4, S10, S11 and α helix H10. Both cortisol and aldosterone are docked to the elongated hydrophobic ligand binding pocket with the polar residues at the two extremities. A difference accessible surface area (DASA) study revealed that cortisol binds with the native hCBG more tightly than aldosterone. Cleavage at the Val379–Met380 peptide bond causes a deformation of hCBG (also revealed through a DASA study). This deformation could probably trigger the release of the bound hormone.

Figure Stereoscopic view of the ribbon diagram of hCBG complexed with cortisol. The bound cortisol is shown in space filling model in blue. Helices and sheets are shown in red and magenta respectively. Turns are shown in yellow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3. a
Fig. 4. a
Fig. 5.
Fig. 6. a

Similar content being viewed by others

References

  1. Hammond GL, Smith CL, Underhill DA (1991) J Steroid Biochem Mol Biol 40:755–762

    Article  CAS  PubMed  Google Scholar 

  2. Strel'chyonok OA, Avvakumov GV (1991) J Steroid Biochem Mol Biol 40:795–803

    Article  CAS  PubMed  Google Scholar 

  3. Hammond GL, Smith CL, Paterson NA, Sibbald WJ (1990) J Clin Endocrinol Metabol 71:34-39

    CAS  Google Scholar 

  4. Seralini GE (1991) CR Seances Soc Biol Fil 185:500–509

    CAS  Google Scholar 

  5. Hammond GL, Smith CL, Underhill CM, Nguyen VT (1990) Biochem Biophys Res Commun 1172:172–177

    Google Scholar 

  6. Pemberton PA, Stein PE, Pepys MB, Potter JM, Carrell RW (1988) Nature 336:257–258

    Google Scholar 

  7. Edger P, Stein P (1995) Structural Biol 2:196–197

    Google Scholar 

  8. Ryu SE, Choi HJ, Kwon KS, Lee KN, Yu MH (1996) Structure 4:1181–1192

    CAS  PubMed  Google Scholar 

  9. Lukacs CM, Rubin H, Christianson DW (1998) Biochemistry 37:3297–3304

    Article  CAS  PubMed  Google Scholar 

  10. Lee B, Richards FM (1971) J Mol Biol 55:379–400

    CAS  PubMed  Google Scholar 

  11. Hammond GL, Smith CL, Goping IS, Underhill DA, Harley MJ, Reventos J, Musto NA, Gunsalus GL, Bardin CW (1987) Proc Natl Acad Sci USA 84:5153–5157

    CAS  PubMed  Google Scholar 

  12. Kato EA, Hsu BR, Kuhn RW (1988) J Steroid Biochem 29:213–220

    Article  CAS  PubMed  Google Scholar 

  13. Bardin CW, Gunsalus GL, Musto NA, Cheng CY, Reventos J, Smith C, Underhill DA, Hammond G (1988) J Steroid Biochem 30:131–139

    Article  CAS  PubMed  Google Scholar 

  14. Grenot C, Blachere T, Rolland de Ravel M, Mappus E, Cuilleron CY (1994) Biochemistry 33:8969–8981

    CAS  PubMed  Google Scholar 

  15. Needleman SB, Wunsch CD (1970) J Mol Biol 48:443–453

    CAS  PubMed  Google Scholar 

  16. Feng DF, Doolittle RF (1987) J Mol Evol 25:351–360

    CAS  PubMed  Google Scholar 

  17. Biosym Technologies (1995) Inc Insight II and Discover Reference. Gu 10065 Barnes Canyon Rd, San Diego, CA 92121, USA

  18. Kabsch W, Sander C (1983) Biopolymers 22:2577–2637

    CAS  PubMed  Google Scholar 

  19. Hagler AT (1985) In: Hurby VJ, Meienhofer J (eds) The peptides. Academic Press, New York, pp 213–299

  20. Dauber-Osguthorpe P, Roberts VA, Osguthorpe DJ, Wolff J, Genest M, Hagler AT (1988) Proteins Struct Funct Genet 4:31–47

    CAS  PubMed  Google Scholar 

  21. Roberts RJ, Coppola JC, Isaacs NW, Kennard O (1973) J Chem Soc, Perkin Trans 2:774–781

    Google Scholar 

  22. Jones G, Willett P, Glen RC (1995) J Mol Biol 245:43–53

    Article  CAS  PubMed  Google Scholar 

  23. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) J Mol Biol 267:727–748

    Article  CAS  PubMed  Google Scholar 

  24. Travis J, Salvesen GS (1983) Annu Rev Biochem 52:655–709

    CAS  PubMed  Google Scholar 

  25. Huber R, Carrell RW (1989) Biochemistry 28:8951–8966

    CAS  PubMed  Google Scholar 

  26. Terry CJ, Blake CCF (1992) Protein Eng 5:505–510

    CAS  PubMed  Google Scholar 

  27. Jarvis JA, Munro SLA, Craik DJ (1992) Protein Eng 5:61–67

    CAS  PubMed  Google Scholar 

  28. Yamashita S, Suzuki A, Yanagita T, Hirohata S, Toyoshima S (2001) Biol Pharm Bull 24:119–122

    Article  CAS  PubMed  Google Scholar 

  29. Laskowski R, Mac Arthur M, Moss D, Thornton J (1993) J Appl Crystallogr 26:91–97

    Article  Google Scholar 

  30. Defaye G, Basset M, Monnier N, Chambaz EM (1980) Biochim Biophys Acta 623:280–294

    Article  CAS  PubMed  Google Scholar 

  31. Mickelson KE, Forsthoefel J, Westphal U (1981) Biochemistry 20:6211–6218

    CAS  PubMed  Google Scholar 

  32. Avvakumov GV, Warmels-Rodenhiser S, Hammond GL (1993) J Biol Chem 268:862–866

    CAS  PubMed  Google Scholar 

  33. Avvakumov GV, Hammond GL (1994) J Steroid Biochem Mol Biol 49:191–194

    Article  CAS  PubMed  Google Scholar 

  34. Avvakumov GV (1995) J Steroid Biochem Mol Biol 53:515–522

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Thanks are due to D.I.C., Bose Institute, Calcutta for providing the computational facilities for the modeling work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyobroto Roychowdhury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dey, R., Roychowdhury, P. Homology model of human corticosteroid binding globulin: a study of its steroid binding ability and a plausible mechanism of steroid hormone release at the site of inflammation. J Mol Model 9, 183–189 (2003). https://doi.org/10.1007/s00894-003-0130-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-003-0130-4

Keywords

Navigation