Skip to main content
Log in

An experimental and theoretical structural study of 5-amino-3-methylisoxazolo-4-carboxylic acid p-chlorophenylamide

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Experimental and theoretical structural studies of 5-amino-3-methylisoxazolo-4-carboxylic acid p-chlorophenylamide were performed. This compound belongs to a new class of isoxazole derivatives exhibiting promising immunological activity. The crystallographic structure was measured and compared with theoretical calculations for the investigated compound. The theoretical analyses were performed using Kohn–Sham density functional theory (DFT) with the B3LYP hybrid exchange-correlation energy functional and 6-311+G(d,p) basis set. The solvent effect was included using the SCRF/PCM method with water (ε=78) as a solvent. Topological analysis was performed in terms of Bader's theory of atoms in molecules, yielding molecular parameters for quantum molecular similarity investigations.

Figure The SCRF/PCM map of electrostatic potential around the molecule: light grey isosurface at +0.5 a.u., dark grey at −0.05 a.u.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Patterson JW, Cheung PS, Ernest MJ (1992) J Med Chem 35:507–510

    CAS  PubMed  Google Scholar 

  2. Kilic M, Kahan BD (2000) Drugs of Today 36:395–410

    CAS  Google Scholar 

  3. Mazzei M, Sottofattori E, Dondero R, Ibrahim M, Melloni E, Michetti M (1999) Il Farmaco 54:452–460

    Article  CAS  PubMed  Google Scholar 

  4. Raffa D, Daidone G, Maggio B, Schillaci D, Plescia F, Torta L (1999) Il Farmaco 54:90–94

    Article  CAS  PubMed  Google Scholar 

  5. Kang YK, Shin KJ, Yoo KH, Seo KJ, Hong CY, Lee CS, Park SY, Kim DJ, Park SW (2000) Bioorg Med Chem Lett 10:95–99

    Article  CAS  PubMed  Google Scholar 

  6. Lepage F, Tombret F, Cuvier G, Marivain A, Gillardin JM (1992) Eur J Med Chem 27:581–587

    CAS  Google Scholar 

  7. Bolvig T, Larsson OM, Pickering DS, Nelson N, Falch E, Krogsgaard-Larsen P, Schousboe A (1999) Eur J Pharmacol 375:367–374

    Article  CAS  PubMed  Google Scholar 

  8. Eddington ND, Cox DS, Roberts RR, Butcher RJ, Edafiogho IO, Stables JP, Cooke N, Goodwin AM, Smith CA, Scott KR (2002) Eur J Med Chem 37:635–648

    Article  CAS  PubMed  Google Scholar 

  9. Chan MF, Raju B, Kois A, Castillo RS, Verner EJ, Wu C, Hwang E, Okun I, Stavros F, Balaji VN (1996) Bioorg Med Chem Lett 6:2393–2398

    Article  CAS  Google Scholar 

  10. Suh H, Jeong SJ, Han YN, Lee HJ, Ryu JH (1997) Bioorg Med Chem Lett 7:389–392

    Article  CAS  Google Scholar 

  11. Thamizharasi S, Vasantha J, Reddy BSR (2002) Eur Polymer J 38:551–559

    Article  CAS  Google Scholar 

  12. Dayan FE, Duke SO, Reddy KN, Hamper BC, Leschinsky KL (1997) J Agric Food Chem 45:967–975

    Article  CAS  Google Scholar 

  13. Ryng S, Machoń Z, Wieczorek Z, Zimecki M, Głowiak T (1997) Arch Pharm Pharm Med Chem 330:319–326

    CAS  Google Scholar 

  14. Ryng S, Machoń Z, Wieczorek Z, Zimecki M, Mokrosz MJ (1998) Eur J Med Chem 33:831–836

    Article  CAS  Google Scholar 

  15. Ryng S, Zimecki M, Sonnenberg Z, Mokrosz MJ (1999) Arch Pharm Pharm Med Chem 332:158–162

    Article  CAS  Google Scholar 

  16. Bader RFW (1990) Atoms in molecules—a quantum theory. Oxford University Press, Oxford

  17. Miertus S, Tomasi J (1982) Chem Phys 65:239–252

    Article  Google Scholar 

  18. Sheldrick G (1997) SHELXS-97 and SHELXL-97: programs for the solution and refinement of crystal structures. University of Göttingen, Germany

  19. Hohenberg P, Kohn W (1964) Phys Rev 136:B864–B871

    Article  Google Scholar 

  20. Kohn W, Sham LJ (1965) Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  21. Becke AD (1993) J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  22. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  23. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  24. Fortunelli A, Tomasi J (1994) Chem Phys Lett 231:34–39

    Article  CAS  Google Scholar 

  25. Orozco M, Javier Luque F (2000) Chem Rev 100:4187–4226

    Article  CAS  PubMed  Google Scholar 

  26. Hadži D, Koller J, Hodošček M, Kocjan D (1987) Correlation of electrostatic potential based parameters of tryptamine congeners with serotonin receptor affinity. In: QSAR in drug design and toxicology. Elsevier, Amsterdam, pp 179–184

  27. Ivanciuc O (2000) 3D QSAR models. In: Diudea MV (ed) QSPR/QSAR studies by molecular descriptors. NoVa Science, New York, pp 233–280

  28. Wade RC (1993) Molecular interaction fields. In: Kubinyi H (ed) 3D QSAR in drug design. ESCOM, Leiden, pp 486–505

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery, JA Jr., Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Salvador P, Dannenberg JJ, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2001) Gaussian 98, rev A11. Gaussian, Pittsburgh Pa.

  30. Biegler-König FW, Bader RFW, Tang TH (1982) J Comput Chem 3:317–328

    Google Scholar 

  31. Hussein W, Walker CG, Peralta-Inga Z, Murray JS (2001) Int J Quantum Chem 82:160–169

    Article  CAS  Google Scholar 

  32. Popelier PLA (1999) J Phys Chem A 103:2883–2890

    Article  CAS  Google Scholar 

  33. Koch U, Popelier PLA (1995) J Phys Chem 99:9747–9754

    CAS  Google Scholar 

Download references

Acknowledgments

The calculations presented in this work were performed on the computers of the Wrocław Centre for Networking and Supercomputing (WCSS) and of the Kraków Academic Computer Centre "ACK Cyfronet" (Grant KBN/SGI/UWrocl/078/2001). This work was supported by State Committee for Scientific Research (Grant 3 P05F 012 24).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneta Jezierska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jezierska, A., Panek, J., Ryng, S. et al. An experimental and theoretical structural study of 5-amino-3-methylisoxazolo-4-carboxylic acid p-chlorophenylamide. J Mol Model 9, 159–163 (2003). https://doi.org/10.1007/s00894-003-0125-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-003-0125-1

Keywords

Navigation