Skip to main content
Log in

Binding mode of ecdysone agonists to the receptor: comparative modeling and docking studies

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Three-dimensional structure models of the ligand-binding domain of the ecdysone receptor of Heliothis virescens were built by the homology modeling technique from the crystal structures of nuclear receptors. Two models were created based both on known ligand-binding domain structures of the receptors with the highest sequence identity to the ecdysone receptor, and on those of steroid hormone receptors. The latter model, which was found to have better stereochemical quality and be in good agreement with the binding of the steroidal framework of the endogenous agonist 20-hydroxyecdyosone, was used for docking studies. The docking of 20-hydroxyecdysone to the receptor model revealed that the ligand molecule can interact with the receptor in a similar manner to other steroid hormone–receptor complexes. The docking of a dibenzoylhydrazine agonist, chromafenozide, was performed based on the correspondences between the molecule and 20-dydroxyecdysone expected by molecular comparison. The interactions of the ligands with the receptor in the complexes modeled were investigated and found to be consistent with known structure–activity relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Riddiford LM, Cherbas P, Truman JW (2000) Vitam Horm 60:1–73

    CAS  Google Scholar 

  2. Thummel CS (1996) Trends Genet 12:306–310

    Article  CAS  PubMed  Google Scholar 

  3. Evans RM (1988) Science 240:889–895

    CAS  PubMed  Google Scholar 

  4. Tsai MJ, O'Malley BW (1994) Annu Rev Biochem 63:451–486

    CAS  PubMed  Google Scholar 

  5. Egner U, Heinrich N, Ruff M, Gangloff M, Mueller-Fahrnow A, Wurtz JM (2001) Med Res Rev 21:523–539

    Article  CAS  PubMed  Google Scholar 

  6. Schapira M, Raaka BM, Samuels HH, Abagyan R (2000) Proc Natl Acad Sci USA 97:1008–1013

    Article  CAS  PubMed  Google Scholar 

  7. Clayton GM, Peak-Chew SY, Evans RM, Schwabe JW (2001) Proc Natl Acad Sci USA 98:1549–1554

    Article  CAS  PubMed  Google Scholar 

  8. Billas IM, Moulinier L, Rochel N, Moras D (2001) J Biol Chem 276:7465–7474

    Article  CAS  PubMed  Google Scholar 

  9. Wing KD (1988) Science 241:467–469

    CAS  PubMed  Google Scholar 

  10. Wing KD, Slawecki RA, Carlson GR (1988) Science 241:470–472

    CAS  Google Scholar 

  11. Nakagawa Y, Hattori K, Minakuchi C, Kugimiya S, Ueno T (2000) Steroids 65:117–123

    Article  CAS  PubMed  Google Scholar 

  12. Shimizu B, Nakagawa Y, Hattori K, Nishimura K, Kurihara N, Ueno T (1997) Steroids 62:638–642

    Article  CAS  PubMed  Google Scholar 

  13. Carlson GR, Dhadialla TS, Hunter R, Jansson RK, Jany CS, Lidert Z, Slawecki RA (2001) Pest Manage Sci 57:115–119

    Article  CAS  Google Scholar 

  14. Yanagi M, Watanabe T, Masui A, Yokoi S, Tsukamoto Y, Ichinose R (2000) ANS-118: a novel insecticide. In: Proceedings of the Brighton Crop Protection Conference, Brighton, pp 27–32

  15. Renaud JP, Rochel N, Ruff M, Vivat V, Chambon P, Gronemeyer H, Moras D (1995) Nature 378:681–689

    Google Scholar 

  16. Darimont BD, Wagner RL, Apriletti JW, Stallcup MR, Kushner PJ, Baxter JD, Fletterick RJ, Yamamoto KR (1998) Genes Dev 12:3343–3356

    CAS  PubMed  Google Scholar 

  17. Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engstrom O, Ohman L, Greene GL, Gustafsson JA, Carlquist M (1997) Nature 389:753–758

    Google Scholar 

  18. Williams SP, Sigler PB (1998) Nature 393:392–396

    Article  CAS  PubMed  Google Scholar 

  19. Sali A, Blundell TL (1994) Comparative protein modelling by satisfaction of spatial restraints by Distance Analysis. In: Bohr H, Brunak S (eds) Protein structure by distance analysis. IOS Press, Amsterdam, pp 64–86

  20. InsightII 98.0 (1998) Molecular modeling package. Accelrys Inc, San Diego, CA, USA

  21. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  22. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comput Chem 2:187–217

    Google Scholar 

  23. Catalyst version 4.5. Accelrys Inc, San Diego, CA, USA

  24. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Rapp BA, Wheeler DL (2000) Nucleic Acids Res 28:15–18

    PubMed  Google Scholar 

  25. Martinez A, Scanlon D, Gross B, Perara SC, Palli SR, Greenland AJ, Windass J, Pongs O, Broad P, Jepson I (1999) Insect Biochem Mol Biol 29:915–930

    Article  CAS  PubMed  Google Scholar 

  26. Nakagawa Y, Shimizu B, Oikawa N, Akamatsu M, Nishimura K, Kurihara N, Ueno T, Fujita T (1995) Three-dimensional quantitative structure–activity analysis of steroidal and dibenzolyhydrazine-type ecdysone agonists. In: Hansch C, Fujita T (eds) Classical and three-dimensional QSAR in agrochemistry, ACS Symp Ser No 606. American Chemical Society, Washington, D.C., pp 288–301

  27. Nakagawa Y, Hattori K, Shimizu B, Akamatsu M, Miyagawa H, Ueno T (1998) Pestic Sci 53:267–277

    Article  CAS  Google Scholar 

  28. Chan TH, Ali A, Britten JF, Thomas AW, Strunz GM, Salonius A (1990) Can J Chem 68:1178–1181

    CAS  Google Scholar 

  29. Nakagawa Y, Minakuchi C, Ueno T (2000) Steroids 65:537–542

    Article  CAS  PubMed  Google Scholar 

  30. Dinan L, Hormann RE, Fujimoto T (1999) J Comput-Aided Mol Des 13:185–207

    Google Scholar 

  31. Talbot WS, Swyryd EA, Hogness DS (1993) Cell 73:1323–1337

    CAS  PubMed  Google Scholar 

  32. Thompson JD, Higgins DG, Gibson TJ (1994) Nucleic Acids Res 22:4673–4680

    PubMed  Google Scholar 

  33. Fujiwara H, Jindra M, Newitt R, Palli SR, Hiruma K, Riddiford LM (1995) Insect Biochem Mol Biol 25:845–856

    Article  CAS  PubMed  Google Scholar 

  34. Swevers L, Drevet JR, Lunke MD, Iatrou K (1995) Insect Biochem Mol Biol 25:857–866

    Article  CAS  PubMed  Google Scholar 

  35. Perera SC, Ladd TR, Dhadialla TS, Krell PJ, Sohi SS, Retnakaran A, Palli SR (1999) Mol Cell Endocrinol 152:73–84

    Article  CAS  PubMed  Google Scholar 

  36. Koelle MR, Talbot WS, Segraves WA, Bender MT, Cherbas P, Hogness DS (1991) Cell 67:59–77

    CAS  PubMed  Google Scholar 

  37. Hannan GN, Hill RJ (1997) Insect Biochem Mol Biol 27:479–488

    Article  CAS  PubMed  Google Scholar 

  38. Verras M, Mavroidis M, Kokolakis G, Gourzi P, Zacharopoulou A, Mintzas AC (1999) Eur J Biochem 265:798–808

    Article  CAS  PubMed  Google Scholar 

  39. Cho WL, Kapitskaya MZ, Raikhel AS (1995) Insect Biochem Mol Biol 25:19–27

    Article  CAS  PubMed  Google Scholar 

  40. Imhof MO, Rusconi S, Lezzi M (1993) Insect Biochem Mol Biol 23:115–124

    CAS  PubMed  Google Scholar 

  41. Saleh DS, Zhang J, Wyatt GR, Walker VK (1998) Mol Cell Endocrinol 143:91–99

    Article  CAS  PubMed  Google Scholar 

  42. Mouillet JF, Delbecque JP, Quennedey B, Delachambre J (1997) Eur J Biochem 248:856–863

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. S. Miyamoto for careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Kasuya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasuya, A., Sawada, Y., Tsukamoto, Y. et al. Binding mode of ecdysone agonists to the receptor: comparative modeling and docking studies. J Mol Model 9, 58–65 (2003). https://doi.org/10.1007/s00894-002-0113-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-002-0113-x

Keywords

Navigation