Skip to main content
Log in

Structures and magnetic properties of mono-doped fullerenes C59Xn and C59X(6−n)− (X=B, N+, P+, As+, Si): isoelectronic analogues of C60 and C60 6−

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Structures of mono-doped fullerenes, C59Xn and C59X(6−n)− (X=B, N+, P+, As+, Si), the isoelectronic analogues to C60 and C60 6− with 60 and 66 π-electrons, have been investigated at the B3LYP/6-31G* level of density functional theory. On the basis of the computed nucleus independent chemical shifts (NICS) at the cage center and also at the center of individual rings as magnetic criteria, heterofullerenes with 60 π-electrons are as aromatic as the parent C60, while those with 66 π-electrons are much less aromatic than C60 6−. The very distinct endohedral chemical shifts of the 66 π-electron systems may be useful to identify the heterofullerenes through their endohedral 3He NMR chemical shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.

Similar content being viewed by others

References

  1. For reviews see: (a) Hirsch A (1995) Synthesis 895–913; (b) Hirsch A (1994) The chemistry of the fullerenes, Thieme, Stuttgart; (c) Hirsch A (1997) J Phys Chem Solids 58:1729–1740; (d) Hirsch A (1998) Top Curr Chem 199:1–65

    Google Scholar 

  2. Park JM, Tarakeshwar P, Kim KS, Clark T (2002) J Chem Phys 116:10684–10691 and references cited therein

    Article  CAS  Google Scholar 

  3. Tenne R (1995) Adv Mater 7:965–995

    CAS  Google Scholar 

  4. Hummelen JC, Bellavia-Lund C, Wudl F (1999) Top Curr Chem 199:93–134

    CAS  Google Scholar 

  5. Hirsch A, Nuber B (1999) Acc Chem Res 32:795–804

    CAS  Google Scholar 

  6. Reuther U, Hirsch A (2000) Carbon 38:1539–1549

    CAS  Google Scholar 

  7. Guo T, Jin C, Smalley RE (1991) J Phys Chem 95:4948–4950

    CAS  Google Scholar 

  8. Muhr HJ, Nesper R, Schnyder B, Kötz R (1996) Chem Phys Lett 249:399–405

    CAS  Google Scholar 

  9. Cao B, Zhou X, Shi Z, Jin Z, Gu Z, Xiao H, Wang J (1997) Acta Phys Chim Sinica 13:204–206

    CAS  Google Scholar 

  10. Cao B, Zhou X, Shi Z, Gu Z, Xiao H, Wang J (1998) Fullerene Sci Technol 6:639–648

    CAS  Google Scholar 

  11. Nakamura T, Ishikawa K, Yamamoto K, Ohana T, Fujiwara S, Koga Y (1999) Phys Chem Chem Phys 1:2631–2633

    CAS  Google Scholar 

  12. Pradeep T, Vijayakrishnan V, Santra AK, Rao CNR (1991) J Phys Chem 95:10564–10565

    CAS  Google Scholar 

  13. Averdung J, Luftmann H, Schlachter I, Mattay J (1995) Tetrahedron 51:6977–6982

    CAS  Google Scholar 

  14. Lamparth I, Nuber B, Schick G, Skiebe A, Groesser T, Hirsch A (1995) Angew Chem Int Ed Engl 34:2257–2259

    CAS  Google Scholar 

  15. Yu R, Zhan M, Cheng D, Yang S, Liu Z, Zheng L (1995) J Phys Chem 99:1818–1819

    CAS  Google Scholar 

  16. Ying ZC, Hettich RL, Compton RN, Haufler RE (1996) J Phys B At Mol Opt Phys 29:4935–4942

    CAS  Google Scholar 

  17. Clipston NL, Brown T, Vasil'ev YY, Barrow MP, Herzschuh R, Reuther U, Hirsch A, Drewello, T (2000) J Phys Chem A 104:9171–9179

    CAS  Google Scholar 

  18. Piechota J, Byszewshi P, Jablonski R, Antonova K (1996) Fullerene Sci Technol 4:491–507

    CAS  Google Scholar 

  19. Antonova K, Byshewski P, Zhizhin G, Piechota J, Marhevka M (1997) Microchim Acta 14:271–273

    CAS  Google Scholar 

  20. Nakamura T, Ishikawa K, Goto A, Ishihara M, Ohana T, Koga Y (2001) Diamond Relat Mater 10:1228–1230

    CAS  Google Scholar 

  21. Stry JJ, Garvey JF (1995) Chem Phys Lett 243:199–204

    CAS  Google Scholar 

  22. Christian JF, Wan Z, Anderson SL (1992) Chem Phys Lett 199:373–378

    CAS  Google Scholar 

  23. Kimura T, Sugai T, Shinohara H (1996) Chem Phys Lett 256:269–273

    CAS  Google Scholar 

  24. Fye JL, Jarrold M (1997) J Phys Chem 101:1836–1840

    CAS  Google Scholar 

  25. Pellarin M, Ray C, Melinon P, Lerme J, Vialle JL, Keghelian P, Perez A, Broyer M (1997) Chem Phys Lett 277:96–104

    CAS  Google Scholar 

  26. Ray C, Pellarin M, Lerme J, VialleJL, Broyer M, Blasé X, Melinon P, Keghelian P, Perez A (1998) Phys Rev Lett 80:5365–5368

    CAS  Google Scholar 

  27. Cao B, Zhou X, Shi Z, Gu Z, Xiao H, Wang J (1998) Chem Lett 735–736

  28. Pellarin M, Ray C, Lerme J, Vialle JL, Broyer M, Blase X, Keghelian P, Melinon P, Perez A (1999) J Chem Phys 110:6927–6938

    CAS  Google Scholar 

  29. Pellarin M, Ray C, Lerme J, Vialle JL, Broyer M, Blase X, Keghelian P, Melinon P, Perez A (1999) Eur Phys J D 9:49–54

    CAS  Google Scholar 

  30. Billas IML, Branz W, Malinowski N, Tast F, Heinebrodt M, Martin TP, Massobrio C, Boero M, Parrinello M (1999) Nanostruct Mater 12:1071–1076

    Article  Google Scholar 

  31. Billas IML, Tast F, Branz W, Malinowski N, Heinebrodt M, Martin TP, Boero M, Massobrio C, Parrinello M (1999) Eur Phys J D 9:337–340

    CAS  Google Scholar 

  32. Ohtsuki T, Ohno K, Shina K, Kawazoe Y, Maruyama Y, Masumoto K (1999) Phys Rev B 60:1531–1534

    CAS  Google Scholar 

  33. Möschel C, Jansen M (1999) Z anorg allg Chem 625:175–177

    Article  Google Scholar 

  34. Branz W, Billas IML, Malinowski N, Tast F, Heinebrodt M, Martin TP (1998) J Chem Phys 109:3425–3430

    CAS  Google Scholar 

  35. Poblet JM, Munoz J, Winkler K, Cancilla M, Hayashi A, Lebrilla CB, Balch AL, Winkler K (1999) Chem Commun 493–494

  36. Hummelen JC, Knight B, Pavlovich J, Gonzalez R, Wudl F (1995) Science 269:1554–1556

    CAS  Google Scholar 

  37. Nuber B, Hirsch A (1996) Chem Commun 1421–1422

  38. Tagmatarchis N, Okada K, Tomiyama T, Shinohara H (2000) Synlett 1761–1763

  39. Kurita N, Koboyyashi K, Kumabora H, Tago K, Ozawa K (1992) Chem Phys Lett 198:95–99

    CAS  Google Scholar 

  40. Liu J, Gu B, Han R (1992) Solid State Commun 84:807–810

    CAS  Google Scholar 

  41. Andreoni W, Gygi F, Parrinello M (1992) Chem Phys Lett 190:159–162

    CAS  Google Scholar 

  42. Chen F, Singh D, Jansen S (1993) J Phys Chem 97:10958–10963

    CAS  Google Scholar 

  43. Jiang J, Dong J, Xu Q, Xing DY (1996) Z Phys D At Mol Clusters 37:341–345

    Article  Google Scholar 

  44. Ren A, Feng J, Tian W, Sun X, Sun C (1998) Chem J Chin Univ 19:288–291

    CAS  Google Scholar 

  45. Lu J, Zhang S, Zhang X, Zhao X (2001) Solid State Commun 118:247–250

    Article  CAS  Google Scholar 

  46. Lu J, Zhang X, Zhao X (2000) Mod Phys Lett B 14:23–29

    Article  CAS  Google Scholar 

  47. Chen Z, Ma K, Pan Y, Zhao X, Tang A (1999) Acta Chim Sinica 57:712–717

    CAS  Google Scholar 

  48. (a) Billas IML, Massobrio C, Boero M, Parrinello M, Branz W, Tast F, Malinowski N, Heinebrodt M, Martin TP (1999) J Chem Phys 111:6787–6796; (b) Guirado-Lopez R (2002) Phys Rev B 65:165421–165428; (c) Lu J, Luo Y, Huang Y, Zhang X, Zhao X (2001) Solid State Commun 118:309–312; (d) Cheng WD, Wu DS, Zhang H, Chen DG, Wang HX (2002) Phys Rev B 66:085422/1–085422/10; (e) Fuks I, Kityk IV, Kasperczyk J, Berdowski J, Schirmer I (2002) Chem Phys Lett 353:7–10

    Article  Google Scholar 

  49. Lu J, Zhou Y, Luo Y, Huang Y, Zhang X, Zhao X (2001) Mol Phys 99:1203–1207

    Article  CAS  Google Scholar 

  50. Ding C, Yang J, Cui X, Chan CT (1999) J Chem Phys 111:8481–8485

    Article  CAS  Google Scholar 

  51. Billas IML, Massobrio C, Boero M, Parrinello M, Branz W, Tast F, Malinowski N, Heinebrodt M, Martin TP (2000) Comput Mater Sci 17:191–195

    Article  CAS  Google Scholar 

  52. Ding C, Yang J, Han R, Wang K (2001) Phys Rev A 64:43201/1–43201/6

    Article  Google Scholar 

  53. Kurita N, Kobayashi K, Kumahora H, Tago K (1993) Fullerene Sci Technol 1:319–328

    CAS  Google Scholar 

  54. Esfarjani K, Ohmo K, Kawazoe Y (1994) Phys Rev B 50:17830–17836

    CAS  Google Scholar 

  55. Esfarjani K, Ohno K, Kawazoe Y, Gu B (1996) Solid State Commun 97:539–542

    Article  CAS  Google Scholar 

  56. Esfarjani K, Ohno K, Kawazoe Y (1996) Surf Rev Lett 3:747–752

    CAS  Google Scholar 

  57. Piechota J, Byszewski P (1997) Z Phys Chem 200:147–155

    CAS  Google Scholar 

  58. Chen Z, Ma K, Zhao H, Pan Y, Zhao X, Tang A, Feng J (1999) J Mol Struct (Theochem) 466:127–135

    Google Scholar 

  59. Batirev IG, Lee KH, Leiro JA (2000) J Phys Chem Solids 61:695–699

    Article  CAS  Google Scholar 

  60. Ren A, Feng J, Sun X, Li W, Tian W, Sun C, Zheng X, Zerner MC (2000) Int J Quantum Chem 78:422–436

    Article  CAS  Google Scholar 

  61. Chen Z, Ma K, Pan Y, Zhao X, Tang A, Feng J (1998) J Chem Soc Faraday Trans 94:2269–2276

    CAS  Google Scholar 

  62. Chen Z, Ma K, Pan Y, Zhao X, Tang A (1999) Chem J Chin Univ 20:1921–1925

    CAS  Google Scholar 

  63. Chen Z, Ma K, Pan Y, Zhao X, Tang A (1999) Can J Chem 77:291–298

    CAS  Google Scholar 

  64. Chen Z, Zhao X, Tang A (1999) J Phys Chem A 103:10961–10968

    CAS  Google Scholar 

  65. (a) Chen Z, Reuther U, Hirsch A, Thiel W (2001) J Phys Chem A 105:8105–8110; (b) Chen Z, Wang G, Zhao X, Tang A (2002) J Mol Mod 8:223–229

  66. Pattanayak J, Kar T, Scheiner S (2001) J Phys Chem A 105:8376–8384

    CAS  Google Scholar 

  67. Pattanayak J, Kar T, Scheiner S (2002) J Phys Chem A 106:2970–2978

    CAS  Google Scholar 

  68. Chen Z, Ma K, Pan Y, Zhao X, Tang A (1999) J Mol Struct (Theochem) 490:61–68

    Google Scholar 

  69. Saunders M, Jiménez–Vázquez HA, Cross RJ, Mroczkowski S, Freedberg DL, Anet FAL (1994) Nature 367:256–258

    Google Scholar 

  70. Saunders M, Cross RJ, Jiménez-Vázquez HA, Shimshi R, Khong A (1996) Science 271:1693–1697

    CAS  Google Scholar 

  71. Saunders M, Jimenez-Vazquez HA, Cross RJ, Billups WE, Gesenberg C, Gonzalez A, Luo W, Haddon RC, Diederich F, Herrmann A (1995) J Am Chem Soc 117:9305–9308

    CAS  Google Scholar 

  72. Shabtai E, Weitz A, Haddon RC, Hoffman RE, Rabinovitz M, Khong A, Cross RJ, Saunders M, Cheng PC, Scott LT (1998) J Am Chem Soc 120:6389–6393

    CAS  Google Scholar 

  73. Wang GW, Saunders M, Khong A, Cross RJ (2000) J Am Chem Soc 122:3216–3217

    CAS  Google Scholar 

  74. Bühl M, Hirsch A (2001) Chem Rev 101:1153–1184

    PubMed  Google Scholar 

  75. Bühl M, Thiel W, Jiao H, Schleyer PvR, Saunders M, Anet FAL (1994) J Am Chem Soc 116:6005–6006

    Google Scholar 

  76. Bühl M (1998) Chem Eur J 4:734–739

    Article  Google Scholar 

  77. Chen Z, Cioslowski J, Rao N, Moncrieff D, Bühl M, Hirsch A, Thiel W (2001) Theor Chem Acc 106:364–368

    CAS  Google Scholar 

  78. (a) Schleyer PvR, Maerker C, Drasnfield A, Jiao H, Hommes NJRvE (1996) J Am Chem Soc 118:6317–6318; (b) Schleyer PvR, Jiao H, Hommes NJRvE, Malkin VG, Malkin O (1997) J Am Chem Soc 119:12669–12670; (c) Schleyer, PvR, Manoharan M, Wang ZX, Kiran B, Jiao H, Puchta R, Hommes NJRvE (2001) Org Lett 3:2465–2468

    PubMed  Google Scholar 

  79. (a) Sun G, Kertesz M (2001) J Phys Chem A 105:5468–5472; (b) Sun G, Kertesz M (2002) Chem Phys 276:107–114

    Article  Google Scholar 

  80. Jiao H, Chen Z, Hirsch A, Thiel W (2002) Phys Chem Chem Phys 4:4916–4920

    Article  CAS  Google Scholar 

  81. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratman RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu C, Liashenko A, Piskorz P, Komaromi, I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Gonzales C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98. Gaussian, Pittsburgh, PA.

  82. Chen Z, Jiao H, Hirsch A, Thiel W (2001) J Org Chem 66:3380–3383

    CAS  PubMed  Google Scholar 

  83. Andreoni W, Gygi F, Parrinello M (1992) Phys Rev Lett 68:823–826

    Article  CAS  PubMed  Google Scholar 

  84. Yamaguchi K, Hayashi S, Okumura M, Nakano M, Mori W (1994) Chem Phys Lett 226:372–380

    Article  CAS  Google Scholar 

  85. Smith AB III, Strongin RM, Brard L, Romanow WJ, Saunders M, Jiménez-Vázquez HA, Cross JR (1994) J Am Chem Soc 116:10831–10832

    CAS  Google Scholar 

  86. Prassides K, Keshavarz KM, Hummelen JC, Andreoni W, Giannozzi P, Beer E, Bellavia C, Cristofolini L, Gonzalez R, Lappas A, Murata Y, Malecki M, Srdanov V, Wudl F (1996) Science 271:1833–1835

    CAS  Google Scholar 

  87. Hauke F, Hirsch A (2001) Tetrahedron 57:3697–3708

    Article  CAS  Google Scholar 

  88. Weitz A, Holczer K, Bellavia-Lund C, Wudl F, Saunders M (1998) Proc Electrochem Soc 98:1039–1047

    Google Scholar 

Download references

Acknowledgment

This work is supported by the Deutsche Forschungsgemeinschaft (DFG) and National Science Foundation Grant CHE-0209857. We thank the Alexander von Humboldt Foundation (Z. Chen) for a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongfang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiao, H., Chen, Z., Hirsch, A. et al. Structures and magnetic properties of mono-doped fullerenes C59Xn and C59X(6−n)− (X=B, N+, P+, As+, Si): isoelectronic analogues of C60 and C60 6− . J Mol Model 9, 34–38 (2003). https://doi.org/10.1007/s00894-002-0108-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-002-0108-7

Keywords

Navigation