Skip to main content
Log in

Structure analysis of montmorillonite intercalated with rhodamine B: modeling and experiment

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The intercalation process and the structure of montmorillonite intercalated with [rhodamine B]+ cations have been investigated using molecular modeling (molecular mechanics and molecular dynamics simulations), X-ray powder diffraction and IR spectroscopy. The structure of the intercalate depends strongly on the concentration of rhodamine B in the intercalation solution. The presence of two phases in the intercalated structure was revealed by modeling and X-ray powder diffraction: (i) phase with basal spacing 18 Å and with bilayer arrangement of guests and (ii) phase with average basal spacing 23 Å and with monolayer arrangement of guests. In both phases the monomeric and dimeric arrangement can coexist in the interlayer space. Three types of dimers in the interlayer structure have been found by modeling: (i) H-dimer (head-to-head arrangement) present in the 18 Å phase, (ii) sandwich type of the head-to-tail arrangement (present in the 23 Å phase) and (iii) J-dimer (head-to-tail arrangement) present in the 23 Å phase.

Figure Montmorillonite intercalated with rhodamine B cations. On the left: phase 18 Å, bilayer dimeric arrangement of guests (H-dimers). On the right: phase 23 Å, monolayer arrangement of guests prepared using intercalation solution with a low concentration of rhodamine B

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1. a
Fig. 2.
Fig. 3.
Fig. 4. a
Fig. 5. a
Fig. 6. a

Similar content being viewed by others

References

  1. Endo T, Nakada N, Sato T, Shimada M (1988) J Phys Chem Solids 49:1423–1428

    Article  CAS  Google Scholar 

  2. Estévez MJT, Arbeloa FL, Arbeloa TL, Arbeloa IL (1995) J Colloid Interface Sci 171:439–445

    Article  Google Scholar 

  3. Estévez MJT, Arbeloa FL, Arbeloa TL, Arbeloa IL (1994) J Colloid Interface Sci 162:412–417

    Article  Google Scholar 

  4. Arbeloa FL, Martínez JMH, Arbeloa TL, Arbeloa IL (1998) Langmuir 14:4566–4573

    Article  Google Scholar 

  5. Ogawa M, Aono T, Kuroda K, Kato C (1993) Langmuir 9:1529–1533

    CAS  Google Scholar 

  6. Chaudhuri R, Arbeloa FL, Arbeloa IL (2000) Langmuir 16:1285–1291

    Article  CAS  Google Scholar 

  7. Estévez MJT, Arbeloa FL, Arbeloa TL, Arbeloa IL (1993) Langmuir 9:3629–3634

    Google Scholar 

  8. Arbeloa FL, Estévez MJT, Arbeloa TL, Arbeloa IL (1995) Langmuir 11:3211–3217

    Google Scholar 

  9. Arbeloa FL, Chaudhuri R, Arbeloa TL, Arbeloa IL (2002) J Colloid Interface Sci 246:281–287

    Article  Google Scholar 

  10. Ogawa M, Wada T, Kuroda K (1995) Langmuir 11:4598-4600

    CAS  Google Scholar 

  11. Lagaly G, Weiss A (1969) Determination of the layer charge in mica-type layer silicates. In: Heller L (ed) Proceedings of the International Clay Conference, Tokyo, vol 1. Israel University Press, Jerusalem, pp 61–80

  12. Lagaly G (1986) Solid State Ionics 22:43–51

    Article  CAS  Google Scholar 

  13. Lerf A (2000) Intercalation compounds in layered host lattices: supramolecular chemistry in nanodimensions. In: Nalwa HS (ed) Handbook of nanostructured materials and nanotechnology, vol 5. Academic Press, New York, pp 1–166

  14. Breu J, Raj N, Catlow CRA (1999) J Chem Soc Dalton Trans 6:835–845

    Article  Google Scholar 

  15. Breu J, Catlow CRA (1995) Inorg Chem 34:4504–4510

    CAS  Google Scholar 

  16. Cerius2 forcefield-based simulations (1997) Molecular Simulations Inc, San Diego

  17. Tsipursky SJ, Drits VA (1984) Clay Miner 19:177–193

    CAS  Google Scholar 

  18. Méring J, Oberlin A (1967) Clays Clay Miner 27:3–18

    Google Scholar 

  19. Karasawa A, Goddard III WA (1989) J Phys Chem 93:7320–7327

    CAS  Google Scholar 

  20. Rappé AK, Goddard III WA (1991) J Phys Chem 95:3358–3363

    CAS  Google Scholar 

  21. Rappé AK, Casewit CJ, Colwell KS, Goddard III WA, Skiff WM (1992) J Am Chem Soc 114:10024–10035

    CAS  Google Scholar 

  22. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684–3690

    CAS  Google Scholar 

  23. Hendricks S, Teller E (1942) J Chem Phys 10:147–167

    CAS  Google Scholar 

  24. Silverstein RM, Bassler GC, Morrill TC (1991) Infrared specrometry. In: Sawicki D (ed) Spectrometric identification of organic compounds. Wiley, New York, pp 91–132

  25. Farmer VC (1974) The layer silicates. In: Farmer VC (ed) The infrared spectra of minerals, chapter 15. Mineralogical Society, London, pp 331–363

Download references

Acknowledgements

This work was supported by the Grant Agency of the Czech Republic, grant no GAČR 205/02/0941, and by the Ministry of Education of the Czech Republic, grant no MSM 113200001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Pospíšil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pospíšil, M., Čapková, P., Weissmannová, H. et al. Structure analysis of montmorillonite intercalated with rhodamine B: modeling and experiment. J Mol Model 9, 39–46 (2003). https://doi.org/10.1007/s00894-002-0107-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-002-0107-8

Keywords

Navigation