Skip to main content
Log in

Combination of modeling and experiment in structure analysis of intercalated layer silicates

  • Review
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A strategy for the structure analysis of intercalated layer silicates based on a combination of modeling (i.e. force field calculations) and experiment is presented. Modeling in conjunction with experiment enables us to analyze the disordered intercalated structures of layer silicates where conventional diffraction analysis fails. Experiment plays a key role in the modeling strategy and in corroboration of the modeling results. X-ray powder diffraction and IR spectroscopy were found to be very useful complementary experiments to molecular modeling. Molecular mechanics and molecular dynamics simulations were carried out in the Cerius 2 and Materials Studio modeling environments. An overview is given of the structures of layer silicates, especially smectites intercalated with various inorganic and organic guest species. Special attention is paid to the ordering of guests in the interlayer space, as it is important for the practical applications of these intercalates, where the interlayer porosity, photofunctions, etc. must be controlled.

Figure Structure of montmorillonite intercalated with octadecylamine via ion−dipole interaction with the maximum concentration of guests corresponding to the monolayer arrangement of guests with basal spacing 33.3 Å. The Na cations remaining in the interlayer are visualized as pink balls

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

References

  1. Jacobson AJ (1992) Intercalation reaction of layered compounds, chapter 6. In: Cheetham AK, Day P (eds) Solid state chemistry compounds. Clarendon Press, Oxford, pp 182–200

  2. Schölhorn R (1984) In: Atwood JL, Davies JED, MacNicol DD (eds) Inclusion compounds. Academic Press, New York, pp 249–349

  3. Lerf A (2000) Intercalation compounds in layered host lattices: supramolecular chemistry in nanodimensions. In: Nalwa HS (ed) Handbook of nanostructured materials and nanotechnology, vol 5. Academic Press, New York, pp 1–166

  4. Ogawa M, Kuroda K (1995) Chem Rev 95:399–438

    CAS  Google Scholar 

  5. Lagaly G (1986) Solid State Ionics 22:43–51

    Article  CAS  Google Scholar 

  6. Clearfield A (1982) Inorganic ion exchange material. In: Clearfield A (ed) Inorganic ion exchange material. CRC Press, Boca Raton, Fla., pp 3–115

  7. Alberti G (1987) In: Williams PA, Hudson MJ (eds) Recent developments in ion exchange. Elsevier, London, pp 233–248

  8. Ogawa M, Aono T, Kuroda K, Kato C (1993) Langmuir 9:1529–1533

    CAS  Google Scholar 

  9. Galarneau A, Barodawalla A, Pinnavaia TJ (1997) Chem Commun 17:1661–1662

    Article  Google Scholar 

  10. Pinnavaia TJ, Tzou MS, Landau SD, Raythatha RH (1984) J Mol Catal 27:195–212

    Article  CAS  Google Scholar 

  11. Schoonheydt RA, Leeman H, Scorpion A, Lenotte I, Grobet P (1994) Clay Clay Miner 42:518–525

    CAS  Google Scholar 

  12. Figueras F, Klapyta Z, Massiani P, Mountassir Z, Tichit D, Fajula F, Gueguen C, Bousquet J, Auroux A (1990) Clay Clay Miner 38:257–264

    CAS  Google Scholar 

  13. Malla PB, Komarneni S (1993) Clay Clay Miner 41:472–483

    CAS  Google Scholar 

  14. Zhao D, Wang G, Yang Y, Guo X, Wang Q, Ren J (1993) Clay Clay Miner 41:317–327

    CAS  Google Scholar 

  15. Brindley GW (1980) In: Brindley GW, Brown G (eds) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society, Monograph No 5, London, pp 125–197

  16. Čapková P, Pospíšil M, Miehé-Brendlé J, Trchová M, Weiss Z, Le Dred R (2000) J Mol Model 6:600–607

    Google Scholar 

  17. Pruissen DJ, Čapková P, Driessen RAJ, Schenk H (2000) App Catal A General 193:103–112

    Article  CAS  Google Scholar 

  18. Čapková P, Driessen RAJ, Schenk H, Weiss Z (1997) J Mol Model 3:467–472

    Article  Google Scholar 

  19. Čapková P, Driessen RAJ, Numan M, Schenk H, Weiss Z, Klika Z (1998) Clay Clay Miner 46:232–239

    Google Scholar 

  20. Breu J, Stoll A, Lange KG, Probst T (2001) Phys Chem Chem Phys 3:1232–1235

    Article  CAS  Google Scholar 

  21. Mering J (1975) Smectites, chapter 4. In: Gieseking JE (ed) Soil components, vol 2, Inorganic components. Springer, Berlin Heidelberg New York, pp 97–119

  22. Vahedi-Faridi A, Guggenheim S (1997) Clay Clay Miner 45:859–866

    CAS  Google Scholar 

  23. Vahedi-Faridi A, Guggenheim S (1999) Clay Clay Miner 47:338–347

    CAS  Google Scholar 

  24. Slade PG, Stone PA (1984) Clay Clay Miner 32:223–226

    CAS  Google Scholar 

  25. Cerius2 documentation (June 2000) Molecular Simulations Inc, San Diego (CD-ROM)

  26. Lehn JM (1990) Angew Chem Int Ed Engl 29:1304–1319

    Google Scholar 

  27. Nangia A, Desiraju GR (1998) Acta Crystallogr A 54:934–944

    Article  Google Scholar 

  28. Gavezzotti A (1991) J Am Chem Soc 113:4622–4629

    CAS  Google Scholar 

  29. Dollase WA (1986) J Appl Crystallogr 19:267–272

    CAS  Google Scholar 

  30. Suortti P (1972) J Appl Crystallogr 5:325–330

    Article  CAS  Google Scholar 

  31. Comba P, Hambley TW (1995) Molecular modeling of inorganic compounds. VCH, Weinheim, pp 5–52

  32. Rappé AK, Casewit CJ, Colwell KS, Goddard WAIII, Skiff WM (1992) J Am Chem Soc 114:10024–10035

    CAS  Google Scholar 

  33. Dauber-Osguthorpe P, Roberts VA, Osguthorpe DJ, Wolff J, Genest M, Hagler AT (1988) Proteins: Struct, Funct, Genet 4:31–47

    Google Scholar 

  34. Clark M, Cramer RDIII, Van Opdenbosh N (1989) J Comput Chem 10:982–1012

    CAS  Google Scholar 

  35. Sun H (1994) J Comput Chem 15:752–768

    CAS  Google Scholar 

  36. Mayo SL, Olafson BD, Goddard WAIII (1990) J Phys Chem 94:8897–8909

    CAS  Google Scholar 

  37. Rappé AK, Goddard WAIII (1991) J Phys Chem 95:3358–3363

    CAS  Google Scholar 

  38. Ewald PP (1921) Ann Phys (Leipzig) 64:253–287

    Google Scholar 

  39. Karasawa N, Goddard WAIII (1989) J Phys Chem 93:7320–7327

    CAS  Google Scholar 

  40. Koudelka B, Čapková P (2002) J Mol Model 8:184–190

    CAS  Google Scholar 

  41. Erk P (1999) In: Braga D, Orpen G (eds) Crystal engineering: from molecules and crystals to materials. Kluwer, Dordrecht, The Netherlands, pp 143–161

  42. Verwer P, Leusen FJJ (1998) Rev Comput Chem 12:327–365

    CAS  Google Scholar 

  43. Frenkel D, Smit B (1996) Understanding molecular simulation. Academic Press, San Diego, pp 19–88

  44. Harris KDM, Kariuki BM, Johnston RL (2001). In: Kužel R, Hašek J (eds) Advances in structure analysis. Czech and Slovak Crystallographic Association, Prague, pp 190–204

  45. Pospíšil M, Čapková P, Měřínská D, Maláč Z, Šimoník J (2001) J Colloid Interface Sci 236:127–131

    Article  PubMed  Google Scholar 

  46. Tzou MS, Pinnavaia TJ (1988) Catal Today 2:243–259

    Article  CAS  Google Scholar 

  47. Yamanaka S, Hattori M (1988) Catal Today 2:261–270

    Article  CAS  Google Scholar 

  48. Bartley GJJ (1988) Catal Today 2:233–241

    Article  CAS  Google Scholar 

  49. Chen G, Han B, Yan H (1998) J Colloid Interface Sci 201:158–163

    Article  CAS  Google Scholar 

  50. Tahani A, Karroua M, Van Damme H, Levitz P, Bergaya F (1999) J Colloid Interface Sci 216:242–249

    PubMed  Google Scholar 

  51. Lee JF, Mortland MM, Chiou CT, Kile DE, Boyd SA (1990) Clay Clay Miner 38:113–120

    CAS  Google Scholar 

  52. Polverejan M, Liu Y, Pinnavaia TJ (2000) In: Sayari A (ed) Studies in surface science and catalysts 129. Elsevier, Amsterdam, pp 401–416

  53. Okada A, Usuki A (1995) Mater Sci Eng C 3:109–115

    Article  Google Scholar 

  54. Breu J, Raj N, Catlow CRA (1999) J Chem Soc Dalton Trans 6:835–845

    Article  Google Scholar 

  55. Beall GW, Tsipursky SJ (1998) Proceedings of Additives 98, Orlando, Fla., pp 266–280

  56. Boyd SA, Mortland MM, Chiou CT (1988) Soil Sci Soc Am J 52:652–657

    CAS  Google Scholar 

  57. Lee JF, Crum JR, Boyd SA (1989) Environ Sci Technol 23:1365–1372

    CAS  Google Scholar 

  58. Chattopadhyay S, Traina SJ (2000) J Colloid Interface Sci 225:307–316

    Article  CAS  PubMed  Google Scholar 

  59. Kibbey TCG, Hayes KF (1993) Environ Sci Technol 27:2168–2173

    Google Scholar 

  60. Lagaly G, Weiss A (1969) In: Heller L (ed) Proceedings of the international clay conference, Tokyo. Israel University Press, Jerusalem, pp 61–80

  61. Hackett E, Manias E, Giannelis EP (1998) J Chem Phys 108:7410–7415

    Article  CAS  Google Scholar 

  62. Čapková P, Burda JV, Weiss Z, Schenk H (1999) J Mol Model 5:8–16

    Article  Google Scholar 

  63. Pospíšil M (2002) Complex structure analysis of intercalates using molecular simulations. Thesis, Charles University Prague

  64. Endo T, Nakada N, Sato T, Shimada M (1988) J Phys Chem Solids 49:1423–1428

    Article  CAS  Google Scholar 

  65. Estévez MJT, Arbeloa FL, Arbeloa TL, Arbeloa IL (1995) J Colloid Interface Sci 171:439–445

    Article  Google Scholar 

  66. Estévez MJT, Arbeloa FL, Arbeloa TL, Arbeloa IL (1994) J Colloid Interface Sci 162:412–417

    Article  Google Scholar 

  67. Chaudhuri R, Arbeloa FL, Arbeloa IL (2000) Langmuir 16:1285–1291

    Article  CAS  Google Scholar 

  68. Arbeloa FL, Chaudhuri R, Arbeloa TL, Arbeloa IL (2002) J Colloid Interface Sci 246:281–287

    Article  Google Scholar 

  69. Pospíšil M, Čapková P, Weiss Z, Maláč Z, Šimoník J (2002) J Colloid Interface Sci 245:126–132

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the grant agency GAČR grant no: 205/02/0941 and the grant agency of the Ministry of education FRVŠ grant no: 2408/2002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavla Čapková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čapková, P., Pospíšil, M. & Weiss, Z. Combination of modeling and experiment in structure analysis of intercalated layer silicates. J Mol Model 9, 195–205 (2003). https://doi.org/10.1007/s00894-002-0106-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-002-0106-9

Keywords

Navigation