Skip to main content
Log in

Historical document layout analysis using anisotropic diffusion and geometric features

  • Published:
International Journal on Digital Libraries Aims and scope Submit manuscript

Abstract

There are several digital libraries worldwide which maintain valuable historical manuscripts. Usually, digital copies of these manuscripts are offered to researchers and readers in raster-image format. These images carry several document degradations that may hinder automatic information retrieval solutions such as manuscript indexing, categorization, retrieval by content, etc. In this paper, we propose a learning-free and hybrid document layout analysis for handwritten historical manuscripts. It has two main phases: page characterization and segmentation. First, the proposed method locates main-content initially using top-down whitespace analysis. It employs anisotropic diffusion filtering to find whitespaces. Then, it extracts template features representing manuscripts’ authors writing behavior. After that, moving windows are used to scan the manuscript page and define main-content boundaries more precisely. We evaluated the proposed method on two datasets: One set is publicly available with 38 historical manuscript pages, and the other set of 51 historical manuscript pages that are collected from the online Harvard Library. Experiments on both datasets show promising results in terms of segmentation quality of main-content that reaches up to 98.5% success rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Abedelkadir, A.: Matlab code and dataset (db1). http://www.cs.bgu.ac.il/~abedas

  2. Antonacopoulos, A., Bridson, D., Papadopoulos, C., Pletschacher, S.: A realistic dataset for performance evaluation of document layout analysis. In: 2009 10th International Conference on Document Analysis and Recognition, pp. 296–300. IEEE (2009)

  3. Antonacopoulos, A., Pletschacher, S., Bridson, D., Papadopoulos, C.: Icdar 2009 page segmentation competition. In: 2009 10th International Conference on Document Analysis and Recognition, pp. 1370–1374. IEEE (2009)

  4. Asi, A., Cohen, R., Kedem, K., El-Sana, J., Dinstein, I.: A coarse-to-fine approach for layout analysis of ancient manuscripts. In: 2014 14th International Conference on Frontiers in Handwriting Recognition, pp. 140–145. IEEE (2014)

  5. Baechler, M., Bloechle, J.L., Ingold, R.: Semi-automatic annotation tool for medieval manuscripts. In: 2010 12th International Conference on Frontiers in Handwriting Recognition, pp. 182–187. IEEE (2010)

  6. Baechler, M., Liwicki, M., Ingold, R.: Text line extraction using DMLP classifiers for historical manuscripts. In: 2013 12th International Conference on Document Analysis and Recognition, pp. 1029–1033. IEEE (2013)

  7. Baird, H.S.: The skew angle of printed documents. In: Proceedings of SPSE’s 40th Annual Conference and Symposium on Hybrid Imaging Systems (1987)

  8. Breuel, T.M.: Two geometric algorithms for layout analysis. In: International Workshop on Document Analysis Systems, pp. 188–199. Springer (2002)

  9. Breuel, T.M.: An algorithm for finding maximal whitespace rectangles at arbitrary orientations for document layout analysis. In: Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings, pp. 66–70. IEEE (2003)

  10. Bukhari, S.S., Breuel, T.M., Asi, A., El-Sana, J.: Layout analysis for arabic historical document images using machine learning. In: 2012 International Conference on Frontiers in Handwriting Recognition, pp. 639–644. IEEE (2012)

  11. Bulacu, M., van Koert, R., Schomaker, L., van der Zant, T.: Layout analysis of handwritten historical documents for searching the archive of the cabinet of the dutch queen. In: Ninth International Conference on Document Analysis and Recognition (ICDAR 2007), vol. 1, pp. 357–361. IEEE (2007)

  12. Chen, K., Liu, C.L., Seuret, M., Liwicki, M., Hennebert, J., Ingold, R.: Page segmentation for historical document images based on superpixel classification with unsupervised feature learning. In: 2016 12th IAPR Workshop on Document Analysis Systems (DAS), pp. 299–304. IEEE (2016)

  13. Chen, K., Seuret, M., Hennebert, J., Ingold, R.: Convolutional neural networks for page segmentation of historical document images. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 965–970. IEEE (2017)

  14. Chen, K., Seuret, M., Liwicki, M., Hennebert, J., Ingold, R.: Page segmentation of historical document images with convolutional autoencoders. In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 1011–1015. IEEE (2015)

  15. Chen, K., Wei, H., Hennebert, J., Ingold, R., Liwicki, M.: Page segmentation for historical handwritten document images using color and texture features. In: 2014 14th International Conference on Frontiers in Handwriting Recognition, pp. 488–493. IEEE (2014)

  16. Clausner, C., Pletschacher, S., Antonacopoulos, A.: Scenario driven in-depth performance evaluation of document layout analysis methods. In: 2011 International Conference on Document Analysis and Recognition, pp. 1404–1408. IEEE (2011)

  17. Corbelli, A., Baraldi, L., Balducci, F., Grana, C., Cucchiara, R.: Layout analysis and content classification in digitized books. In: Italian Research Conference on Digital Libraries, pp. 153–165. Springer (2016)

  18. Cruz, F., Terrades, O.R.: Em-based layout analysis method for structured documents. In: 2014 22nd International Conference on Pattern Recognition, pp. 315–320. IEEE (2014)

  19. Elanwar, R., Qin, W., Betke, M.: Making scanned arabic documents machine accessible using an ensemble of svm classifiers. Int. J. Doc. Anal. Recognit. (IJDAR) 21(1–2), 59–75 (2018)

    Article  Google Scholar 

  20. Garz, A., Sablatnig, R., Diem, M.: Layout analysis for historical manuscripts using sift features. In: 2011 International Conference on Document Analysis and Recognition, pp. 508–512. IEEE (2011)

  21. Geusebroek, J.M., Smeulders, A.W., Van De Weijer, J.: Fast anisotropic gauss filtering. IEEE Trans. Image Process. 12(8), 938–943 (2003)

    Article  MathSciNet  Google Scholar 

  22. Giotis, A.P., Sfikas, G., Gatos, B., Nikou, C.: A survey of document image word spotting techniques. Pattern Recognit. 68, 310–332 (2017)

    Article  Google Scholar 

  23. Kang, L., Kumar, J., Ye, P., Li, Y., Doermann, D.: Convolutional neural networks for document image classification. In: 2014 22nd International Conference on Pattern Recognition, pp. 3168–3172. IEEE (2014)

  24. Lam, S.W.: A local-to-global approach to complex document layout analysis. In: MVA, pp. 431–434 (1994)

  25. Le, V.P., Nayef, N., Visani, M., Ogier, J.M., De Tran, C.: Text and non-text segmentation based on connected component features. In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 1096–1100. IEEE (2015)

  26. Liang, J., Phillips, I.T., Haralick, R.M.: Performance evaluation of document layout analysis algorithms on the uw data set. In: Document Recognition IV, vol. 3027, pp. 149–160. International Society for Optics and Photonics (1997)

  27. Library, H.: Islamic heritage project. http://ocp.hul.harvard.edu/ihp/scope.html

  28. Maurer, C.R., Qi, R., Raghavan, V.: A linear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 265–270 (2003)

    Article  Google Scholar 

  29. Mehri, M., Héroux, P., Gomez-Krämer, P., Mullot, R.: Texture feature benchmarking and evaluation for historical document image analysis. Int. J. Doc. Anal. Recognit. (IJDAR) 20(1), 1–35 (2017)

    Article  Google Scholar 

  30. Mehri, M., Nayef, N., Héroux, P., Gomez-Krämer, P., Mullot, R.: Learning texture features for enhancement and segmentation of historical document images. In: Proceedings of the 3rd International Workshop on Historical Document Imaging and Processing, pp. 47–54. ACM (2015)

  31. Nagy, G.: Twenty years of document image analysis in pami. IEEE Trans. Pattern Anal. Mach. Intell. 1, 38–62 (2000)

    Article  Google Scholar 

  32. Nikolaou, N., Makridis, M., Gatos, B., Stamatopoulos, N., Papamarkos, N.: Segmentation of historical machine-printed documents using adaptive run length smoothing and skeleton segmentation paths. Image Vis. Comput. 28(4), 590–604 (2010)

    Article  Google Scholar 

  33. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  34. Ramel, J.Y., Leriche, S., Demonet, M.L., Busson, S.: User-driven page layout analysis of historical printed books. Int. J. Doc. Anal. Recognit. (IJDAR) 9(2–4), 243–261 (2007)

    Article  Google Scholar 

  35. Sauvola, J., Pietikäinen, M.: Adaptive document image binarization. Pattern Recognit. 33(2), 225–236 (2000)

    Article  Google Scholar 

  36. Seuret, M., Chen, K., Eichenbergery, N., Liwicki, M., Ingold, R.: Gradient-domain degradations for improving historical documents images layout analysis. In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 1006–1010. IEEE (2015)

  37. Seuret, M., Ingold, R., Liwicki, M.: N-light-n: A highly-adaptable java library for document analysis with convolutional auto-encoders and related architectures. In: 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 459–464. IEEE (2016)

  38. Simistira, F., Seuret, M., Eichenberger, N., Garz, A., Liwicki, M., Ingold, R.: Diva-hisdb: A precisely annotated large dataset of challenging medieval manuscripts. In: 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 471–476. IEEE (2016)

  39. Simon, A., Pret, J.C., Johnson, A.P.: A fast algorithm for bottom-up document layout analysis. IEEE Trans. Pattern Anal. Mach. Intell. 19(3), 273–277 (1997)

    Article  Google Scholar 

  40. Singh, B.M., Sharma, R., Ghosh, D., Mittal, A.: Adaptive binarization of severely degraded and non-uniformly illuminated documents. Int. J. Doc. Anal. Recognit. (IJDAR) 17(4), 393–412 (2014)

    Article  Google Scholar 

  41. Singh, C., Bhatia, N., Kaur, A.: Hough transform based fast skew detection and accurate skew correction methods. Pattern Recognit. 41(12), 3528–3546 (2008)

    Article  Google Scholar 

  42. Tran, T.A., Na, I.S., Kim, S.H.: Hybrid page segmentation using multilevel homogeneity structure. In: Proceedings of the 9th International Conference on Ubiquitous Information Management and Communication, p. 78. ACM (2015)

  43. Vasilopoulos, N., Kavallieratou, E.: Complex layout analysis based on contour classification and morphological operations. Eng. Appl. Artif. Intell. 65, 220–229 (2017)

    Article  Google Scholar 

  44. Wahl, F.M., Wong, K.Y., Casey, R.G.: Block segmentation and text extraction in mixed text/image documents. Comput. Graph. Image Process. 20(4), 375–390 (1982)

    Article  Google Scholar 

  45. Wei, H., Baechler, M., Slimane, F., Ingold, R.: Evaluation of SVM, MLP and GMM classifiers for layout analysis of historical documents. In: 2013 12th International Conference on Document Analysis and Recognition, pp. 1220–1224. IEEE (2013)

  46. Wei, H., Chen, K., Ingold, R., Liwicki, M.: Hybrid feature selection for historical document layout analysis. In: 2014 14th International Conference on Frontiers in Handwriting Recognition, pp. 87–92. IEEE (2014)

  47. Wei, H., Seuret, M., Chen, K., Fischer, A., Liwicki, M., Ingold, R.: Selecting autoencoder features for layout analysis of historical documents. In: Proceedings of the 3rd International Workshop on Historical Document Imaging and Processing, pp. 55–62. ACM (2015)

Download references

Acknowledgements

The authors would like to thank King Fahd University of Petroleum and Minerals for the support during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galal M. BinMakhashen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BinMakhashen, G.M., Mahmoud, S.A. Historical document layout analysis using anisotropic diffusion and geometric features. Int J Digit Libr 21, 329–342 (2020). https://doi.org/10.1007/s00799-020-00280-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00799-020-00280-w

Keywords

Navigation