Expressiveness and machine processability of Knowledge Organization Systems (KOS): an analysis of concepts and relations

Abstract

This study considers the expressiveness (that is, the expressive power or expressivity) of different types of Knowledge Organization Systems (KOS) and discusses its potential to be machine-processable in the context of the semantic web. For this purpose, the theoretical foundations of KOS are reviewed based on conceptualizations introduced by the Functional Requirements for Subject Authority Data (FRSAD) and the Simple Knowledge Organization System (SKOS); natural language processing techniques are also implemented. Applying a comparative analysis, the dataset comprises a thesaurus (Eurovoc), a subject headings system (LCSH) and a classification scheme (DDC). These are compared with an ontology (CIDOC-CRM) by focusing on how they define and handle concepts and relations. It was observed that LCSH and DDC focus on the formalism of character strings (nomens) rather than on the modelling of semantics; their definition of what constitutes a concept is quite fuzzy, and they comprise a large number of complex concepts. By contrast, thesauri have a coherent definition of what constitutes a concept, and apply a systematic approach to the modelling of relations. Ontologies explicitly define diverse types of relations, and are by their nature machine-processable. The paper concludes that the potential of both the expressiveness and machine processability of each KOS is extensively regulated by its structural rules. It is harder to represent subject headings and classification schemes as semantic networks with nodes and arcs, while thesauri are more suitable for such a representation. In addition, a paradigm shift is revealed which focuses on the modelling of relations between concepts, rather than the concepts themselves.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Notes

  1. 1.

    For an analysis of these issues see: http://en.wikipedia.org/wiki/Common_Era and https://en.wikipedia.org/wiki/Anno_Domini.

  2. 2.

    FRSAD is incorporated in the consolidate edition of FRBR, known as Library Reference Model (LRM) [42], which was endorsed by the IFLA Professional Committee in the summer of 2017. But, in the LRM there are no concept, object and event entities of FRSAD; neither the term thema which is generalized and renamed as res (Latin for “thing”) in order to serve as the top entity in the hierarchy. Basically, LRM is not concerned with aboutness, and it ostracizes the structure of KOSs from the issues of concern. The only definition that LRM contains is that a res has nomens and that it may be related with another res.

  3. 3.

    Certainly, this is not unconditional, since there are exceptions like interdisciplinary numbers.

  4. 4.

    It is acknowledged that in OWL everything is a subclass of thing, but this does not mean that every class of the ontology follows an internal hierarchy.

References

  1. 1.

    Kuhn, T.: A survey and classification of controlled natural languages. Comput. Linguist. 40, 121–170 (2014). https://doi.org/10.1162/COLI_a_00168

    Article  Google Scholar 

  2. 2.

    Stock, W.G.: Concepts and semantic relations in information science. J. Am. Soc. Inf. Sci. Technol. 61, 1951–1969 (2010). https://doi.org/10.1002/asi.21382

    Article  Google Scholar 

  3. 3.

    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284, 34–43 (2001). https://doi.org/10.1038/scientificamerican0501-34

    Article  Google Scholar 

  4. 4.

    Antoniou, G., Van Harmelen, F.: A Semantic Web Primer. MIT Press, Cambridge (2008)

    Google Scholar 

  5. 5.

    Smiraglia, R.P.: The Elements of Knowledge Organization. Springer, Heidelberg (2014)

    Book  Google Scholar 

  6. 6.

    Hjørland, B.: Semantics and knowledge organization. Annu. Rev. Inf. Sci. Technol. 41, 367–405 (2008). https://doi.org/10.1002/aris.2007.1440410115

    Article  Google Scholar 

  7. 7.

    Hjørland, B.: Concepts, paradigms and knowledge organization. In: Gnoli, C., Mazzocchi, F. (eds.) Paradigms and Conceptual Systems in Knowledge Organization: Proceedings of the 11th International ISKO Conference, 23–26 February 2010, Rome, Italy, pp. 38–42. Ergon, Würzburg (2010)

  8. 8.

    Margolis, E., Laurence, S.: Concepts (2011). http://plato.stanford.edu/archives/spr2014/entries/concepts/. Accessed 30 May 2018

  9. 9.

    Lakoff, G.: Women, Fire, and Dangerous Things: What Categories Reveal about the Mind. University of Chicago Press, Chicago (1990)

    Google Scholar 

  10. 10.

    Rips, L.J., Smith, E.E., Medin, D.L.: Concepts and categories: memory, meaning, and metaphysics. In: Holyoak, K.J., Morrison, R.G. (eds.) The Oxford Handbook of Thinking and Reasoning, pp. 177–209. Oxford University Press, Oxford (2013)

    Google Scholar 

  11. 11.

    Lakoff, G., Johnson, M.: Metaphors We Live By. University of Chicago Press, Chicago (2003)

    Book  Google Scholar 

  12. 12.

    Pinker, S.: The Language Instinct: How the Mind Creates Language. Harper Perennial Modern Classics, New York (2007)

    Google Scholar 

  13. 13.

    Smiraglia, R., den Heuvel, C.V.: Classifications and concepts: towards an elementary theory of knowledge interaction. J. Doc. 69, 360–383 (2013). https://doi.org/10.1108/JD-07-2012-0092

    Article  Google Scholar 

  14. 14.

    Blair, D.: Wittgenstein, Language and Information: “Back to the Rough Ground!”. Springer, Dordrecht (2006)

    Book  Google Scholar 

  15. 15.

    Jacob, E.K.: Classification and categorization: a difference that makes a difference. Libr. Trends. 52, 515–540 (2004)

    Google Scholar 

  16. 16.

    Hjørland, B.: Is classification necessary after Google? J. Doc. 68, 299–317 (2012). https://doi.org/10.1108/00220411211225557

    Article  Google Scholar 

  17. 17.

    Zavalina, O.L.: Subject access: conceptual models, functional requirements, and empirical data. J. Libr. Metadata 12, 140–163 (2012). https://doi.org/10.1080/19386389.2012.699829

    Article  Google Scholar 

  18. 18.

    Svenonius, E.: LCSH: semantics, syntax and specificity. Cat. Classif. Q. 29, 17–30 (2000). https://doi.org/10.1300/J104v29n01_02

    Article  Google Scholar 

  19. 19.

    Salah, A.A., Gao, C., Suchecki, K., Scharnhorst, A., Smiraglia, R.P.: The evolution of classification systems: ontogeny of the UDC. In: Neelameghan, A., Raghavan, K.S. (eds.) Categories, Contexts and Relations in Knowledge Organization: Proceedings of the 12th International ISKO Conference, 6–9 August 2012, Mysore, India, pp. 51–57. Ergon, Würzburg (2012)

  20. 20.

    Mai, J.-E.: A postmodern theory of knowledge organization. In: Woods, L. (ed.) ASIS’99: Proceedings of the 62nd ASIS Annual Meeting, Washington, DC, October 31–November 4, 1999: Knowledge, Creation, Organization and Use, pp. 547–556. Information Today, Medford, NJ (1999)

  21. 21.

    Szostak, R.: Complex concepts into basic concepts. J. Am. Soc. Inf. Sci. Technol. 62, 2247–2265 (2011). https://doi.org/10.1002/asi.21635

    Article  Google Scholar 

  22. 22.

    Hjørland, B.: Concept theory. J. Am. Soc. Inf. Sci. Technol. 60, 1519–1536 (2009). https://doi.org/10.1002/asi.21082

    Article  Google Scholar 

  23. 23.

    Hjørland, B., Pedersen, K.N.: A substantive theory of classification for information retrieval. J. Doc. 61, 582–597 (2005). https://doi.org/10.1108/00220410510625804

    Article  Google Scholar 

  24. 24.

    Mai, J.-E.: The modernity of classification. J. Doc. 67, 710–730 (2011). https://doi.org/10.1108/00220411111145061

    Article  Google Scholar 

  25. 25.

    Olson, H.A.: Difference, culture and change: the untapped potential of LCSH. Cat. Classif. Q. 29, 53–71 (2000). https://doi.org/10.1300/J104v29n01_04

    Article  Google Scholar 

  26. 26.

    Olson, H.A.: The power to name: representation in library catalogs. Signs 26, 639–668 (2001)

    Article  Google Scholar 

  27. 27.

    Sperberg-McQueen, C.M.: Classification and its structures. In: Schreibman, S., Siemens, R., Unsworth, J. (eds.) A Companion to Digital Humanities. Blackwell, Oxford (2004)

    Google Scholar 

  28. 28.

    Alexiev, B., Marksbury, N.: Terminology as organized knowledge. In: Gnoli, C., Mazzocchi, F. (eds.) Paradigms and Conceptual Systems in Knowledge Organization: Proceedings of the 11th International ISKO Conference, 23–26 February 2010, Rome, Italy, pp. 363–370. Ergon, Würzburg (2010)

  29. 29.

    L’Homme, M.-C., Bernier-Colborne, G.: Terms as labels for concepts, terms as lexical units: A comparative analysis in ontologies and specialized dictionaries. Appl. Ontol. 7, 387–400 (2012). https://doi.org/10.3233/AO-2012-0116

    Article  Google Scholar 

  30. 30.

    Goguen, J.A.J.: Concept representation in natural and artificial languages: axioms, extensions and applications for fuzzy sets. Int. J. Man Mach. Stud. 6, 513–561 (1974). https://doi.org/10.1016/S0020-7373(74)80017-9

    MathSciNet  Article  MATH  Google Scholar 

  31. 31.

    Clarke, S.D.: Thesaural relationships. In: Bean, C.A., Green, R. (eds.) Relationships in the Organization of Knowledge, pp. 37–52. Springer, Amsterdam (2001)

    Chapter  Google Scholar 

  32. 32.

    Green, R.: Relationships in the organization of knowledge: an overview. In: Bean, C.A., Green, R. (eds.) Relationships in the Organization of Knowledge, pp. 3–18. Springer, Amsterdam (2001)

    Chapter  Google Scholar 

  33. 33.

    Engerer, V.: Control and syntagmatization: vocabulary requirements in information retrieval thesauri and natural language lexicons. J. Assoc. Inf. Sci. Technol. 68, 1480–1490 (2017). https://doi.org/10.1002/asi.23783

    Article  Google Scholar 

  34. 34.

    IFLA: Functional Requirements for Subject Authority Data (FRSAD): A Conceptual Model. IFLA, Edinburgh (2010)

    Google Scholar 

  35. 35.

    Furner, J.: FRSAD and the ontology of subjects of works. Cat. Classif. Q. 50, 494–516 (2012). https://doi.org/10.1080/01639374.2012.681269

    Article  Google Scholar 

  36. 36.

    Gemberling, T.: Thema and FRBR’s third group. Cat. Classif. Q. 48, 445–449 (2010). https://doi.org/10.1080/01639371003745413

    Article  Google Scholar 

  37. 37.

    Panzer, M.: Two tales: aligning FRSAD with SKOS. In: Boteram, F., Gödert, W., Hubrich, J. (eds.) Concepts in Context: Proceedings of the Cologne Conference on Interoperability and Semantics in Knowledge Organization, July 19th–20th, 2010, pp. 157–168. Ergon, Würzburg (2010)

  38. 38.

    O’Neill, E.T., Kammerer, K.A., Bennett, R.: The aboutness of words. J. Assoc. Inf. Sci. Technol. 68, 2471–2483 (2017). https://doi.org/10.1002/asi.23856

    Article  Google Scholar 

  39. 39.

    BBC: The man who has focused on one word for 23 years (2017). http://www.bbc.com/news/magazine-40781213. Accessed 30 May 2018

  40. 40.

    Peponakis, M.: In the name of the name: RDF literals, ER attributes and the potential to rethink the structures and visualizations of catalogs. Inf. Technol. Libr. 35, 19–38 (2016). https://doi.org/10.6017/ital.v35i2.8749

    Article  Google Scholar 

  41. 41.

    Nelson, S.J., Johnston, W.D., Humphreys, B.L.: Relationships in medical subject headings (MeSH). In: Bean, C.A., Green, R. (eds.) Relationships in the Organization of Knowledge, pp. 171–184. Springer, Amsterdam (2001)

    Chapter  Google Scholar 

  42. 42.

    IFLA: IFLA Library Reference Model: A Conceptual Model for Bibliographic Information. IFLA, Edinburgh (2017)

    Google Scholar 

  43. 43.

    Ben Abacha, A., Zweigenbaum, P.: MEANS: a medical question-answering system combining NLP techniques and semantic Web technologies. Inf. Process. Manag. 51, 570–594 (2015). https://doi.org/10.1016/j.ipm.2015.04.006

    Article  Google Scholar 

  44. 44.

    Shiri, A.: Linked data meets big data: a knowledge organization systems perspective. Adv. Classif. Res. Online. 24, 16–20 (2014). https://doi.org/10.7152/acro.v24i1.14672

    Article  Google Scholar 

  45. 45.

    W3C: SKOS Simple Knowledge Organization System Reference. W3C, Cambridge (2009)

    Google Scholar 

  46. 46.

    Baker, T., Bechhofer, S., Isaac, A., Miles, A., Schreiber, G., Summers, E.: Key choices in the design of simple knowledge organization system (SKOS). Web Semant. Sci. Serv. Agents World Wide Web 20, 35–49 (2013). https://doi.org/10.1016/j.websem.2013.05.001

    Article  Google Scholar 

  47. 47.

    Maltese, V., Farazi, F.: Towards the integration of knowledge organization systems with the linked data cloud. In: Slavic, A., Civallero, E. (eds.) Classification and Ontology: Formal Approaches and Access to Knowledge: Proceedings of the International UDC Seminar 19–20 September 2011, The Hague, the Netherlands, Organized by UDC Consortium, The Hague, pp. 75–90. Ergon, Würzburg (2011)

  48. 48.

    W3C: SKOS eXtension for Labels (SKOS-XL) Namespace Document—HTML Variant. W3C, Cambridge (2009)

    Google Scholar 

  49. 49.

    Mader, C., Haslhofer, B., Isaac, A.: Finding quality issues in SKOS vocabularies. In: Zaphiris, P., Buchanan, G., Rasmussen, E., Loizides, F. (eds.) Theory and Practice of Digital Libraries. Springer, Paphos (2012)

    Google Scholar 

  50. 50.

    Kless, D., Jansen, L., Milton, S.: A content-focused method for re-engineering thesauri into semantically adequate ontologies using OWL. Semant. Web 7, 543–576 (2016). https://doi.org/10.3233/SW-150194

    Article  Google Scholar 

  51. 51.

    Jain, P., Hitzler, P., Yeh, P.Z., Verma, K., Sheth, A.: Linked data is merely more data. In: Brickley, D., Chaudhri, V.K., Halpin, H., McGuinness, D. (eds.) Linked Data Meets Artificial Intelligence, pp. 82–86. AAAI Press, California (2010)

    Google Scholar 

  52. 52.

    Comrie, B.: Language universals and linguistic typology: syntax and morphology. University of Chicago Press, Chicago (1989)

    Google Scholar 

  53. 53.

    Stump, G.T.: Inflectional morphology: a theory of paradigm structure. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  54. 54.

    Pirkola, A.: Morphological typology of languages for IR. J. Doc. 57, 330–348 (2001). https://doi.org/10.1108/EUM0000000007085

    Article  Google Scholar 

  55. 55.

    Prokopidis, P., Georgantopoulos, B., Papageorgiou, H.: A suite of NLP tools for Greek. In: Proceedings of the 10th International Conference of Greek Linguistics, Komotini, Greece (2011)

  56. 56.

    de Abreu, S.C., Vieira, R.: RelP: portuguese open relation extraction. Knowl. Organ. 44, 163–177 (2017). https://doi.org/10.5771/0943-7444-2017-3-163

    Article  Google Scholar 

  57. 57.

    Bean, C.A., Green, R., Myaeng, S.H.: Introduction. In: Green, R., Bean, C.A., Myaeng, S.H. (eds.) The Semantics of Relationships, pp. vii–xvi. Springer, Amsterdam (2002)

    MATH  Google Scholar 

  58. 58.

    Wacholder, N., Liu, L.: User preference: a measure of query-term quality. J. Am. Soc. Inf. Sci. Technol. 57, 1566–1580 (2006). https://doi.org/10.1002/asi.20315

    Article  Google Scholar 

  59. 59.

    Lioma, C., Ounis, I.: A syntactically-based query reformulation technique for information retrieval. Inf. Process. Manag. 44, 143–162 (2008). https://doi.org/10.1016/j.ipm.2006.12.005

    Article  MATH  Google Scholar 

  60. 60.

    Murphy, G.L.: The Big Book of Concepts. MIT Press, Cambridge (2002)

    Book  Google Scholar 

  61. 61.

    Mastora, A., Peponakis, M., Kapidakis, S.: SKOS concepts and natural language concepts: an analysis of latent relationships in KOSs. J. Inf. Sci. 43, 492–508 (2017). https://doi.org/10.1177/0165551516648108

    Article  Google Scholar 

  62. 62.

    Johansson, I.: Four kinds of Is_a relation. In: Munn, K., Smith, B. (eds.) Applied Ontology: An Introduction, pp. 235–254. De Gruyter, Berlin (2008)

    Google Scholar 

  63. 63.

    Peters, I., Weller, K.: Paradigmatic and syntagmatic relations in knowledge organization systems. Inf. Wiss. Prax. 59, 100–107 (2008)

    Google Scholar 

  64. 64.

    ISO: ISO 25964-1: Information and Documentation—Thesauri and Interoperability with Other Vocabularies—Part 1: Thesauri for Information Retrieval. International Organization for Standardization (ISO), Geneva (2011)

    Google Scholar 

  65. 65.

    Aitchison, J., Clarke, S.D.: The thesaurus: a historical viewpoint, with a look to the future. Cat. Classif. Q. 37, 5–21 (2004). https://doi.org/10.1300/J104v37n03_02

    Article  Google Scholar 

  66. 66.

    Doerr, M.: Semantic problems of thesaurus mapping. J. Digit. Inf. 1 (2001). https://journals.tdl.org/jodi/index.php/jodi/article/view/31

  67. 67.

    Stellato, A.: Dictionary, thesaurus or ontology? Disentangling our choices in the semantic web jungle. J. Integr. Agric. 11, 710–719 (2012). https://doi.org/10.1016/S2095-3119(12)60060-4

    Article  Google Scholar 

  68. 68.

    Alexiev, V., Isaac, A., Lindenthal, J.: On the composition of ISO 25964 hierarchical relations (BTG, BTP, BTI). Int. J. Digit. Libr. 17, 39–48 (2016). https://doi.org/10.1007/s00799-015-0162-2

    Article  Google Scholar 

  69. 69.

    Stone, A.T.: The LCSH century: a brief history of the library of congress subject headings, and introduction to the centennial essays. Cat. Classif. Q. 29, 1–15 (2000). https://doi.org/10.1300/J104v29n01_01

    Article  Google Scholar 

  70. 70.

    Heiner-Freiling, M.: Survey on subject heading languages used in national libraries and bibliographies. Cat. Classif. Q. 29, 189–198 (2000). https://doi.org/10.1300/J104v29n01_13

    Article  Google Scholar 

  71. 71.

    Harper, C.A.: Encoding library of congress subject headings in SKOS: authority control for the semantic web. In: Proceedings of the 2006 International Conference on Dublin Core and Metadata Applications. Dublin Core Metadata Initiative, Manzanillo, Mexico (2006)

  72. 72.

    Summers, E., Isaac, A., Redding, C., Krech, D.: LCSH, SKOS and linked data. In: Greenberg, J., Wolfgang, K. (eds.) Metadata for Semantic and Social Applications: Proceedings of the 2008 International Conference on Dublin Core and Metadata Applications, pp. 25–33. Dublin Core Metadata Initiative, Berlin, Germany (2008)

  73. 73.

    Kwaśnik, B.H.: Approaches to providing context in knowledge representation structures. In: Slavic, A., Civallero, E. (eds.) Classification and Ontology: Formal Approaches and Access to Knowledge: Proceedings of the International UDC Seminar 19–20 September 2011, The Hague, The Netherlands, Organized by UDC Consortium, The Hague, pp. 9–23. Ergon, Würzburg (2011)

  74. 74.

    Panzer, M.: Cool URIs for the DDC: towards web-scale accessibility of a large classification system. In: Greenberg, J., Wolfgang, K. (eds.) Metadata for Semantic and Social Applications: Proceedings of the 2008 International Conference on Dublin Core and Metadata Applications, pp. 183–190. Berlin, Germany (2008)

  75. 75.

    Hjørland, B.: The concept of ‘subject’ in information science. J. Doc. 48, 172–200 (1992). https://doi.org/10.1108/eb026895

    Article  Google Scholar 

  76. 76.

    Green, R., Panzer, M.: Relations in the notational hierarchy of the dewey decimal classification. In: Slavic, A., Civallero, E. (eds.) Classification and Ontology: Formal Approaches and Access to Knowledge: Proceedings of the International UDC Seminar 19–20 September 2011, The Hague, The Netherlands, Organized by UDC Consortium, The Hague, pp. 161–176. Ergon, Würzburg (2011)

  77. 77.

    Mazzocchi, F.: Relations in KOS: Is it possible to couple a common nature with different roles? J. Doc. 73, 368–383 (2017). https://doi.org/10.1108/JD-05-2016-0063

    Article  Google Scholar 

  78. 78.

    Mitchell, J.S., Zeng, M.L., Žumer, M.: Modeling classification systems in multicultural and multilingual contexts. Cat. Classif. Q. 52, 90–101 (2014). https://doi.org/10.1080/01639374.2013.845620

    Article  Google Scholar 

  79. 79.

    Poli, R., Obrst, L.: The interplay between ontology as categorial analysis and ontology as technology. In: Poli, R., Healy, M., Kameas, A. (eds.) Theory and Applications of Ontology: Computer Applications, pp. 1–26. Springer, Amsterdam (2010)

    Chapter  Google Scholar 

  80. 80.

    Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing? Int. J. Hum. Comput. Stud. 43, 907–928 (1995). https://doi.org/10.1006/ijhc.1995.1081

    Article  Google Scholar 

  81. 81.

    Kohne, J.: Ontology, its origins and its meaning in information science. In: Hagengruber, R., Riss, U. (eds.) Philosophy, Computing and Information Science, pp. 85–89. Pickering & Chatto, London (2014)

    Google Scholar 

  82. 82.

    Pattuelli, M.C., Provo, A., Thorsen, H.: Ontology building for linked open data: a pragmatic perspective. J. Libr. Metadata 15, 265–294 (2015). https://doi.org/10.1080/19386389.2015.1099979

    Article  Google Scholar 

  83. 83.

    Doerr, M.: The CIDOC conceptual reference module: an ontological approach to semantic interoperability of metadata. AI Mag. 24, 75 (2003). https://doi.org/10.1609/aimag.v24i3.1720

    Article  Google Scholar 

  84. 84.

    ISO: ISO 21127: Information and Documentation: A Reference Ontology for the Interchange of Cultural Heritage Information. ISO, Geneva (2006)

    Google Scholar 

  85. 85.

    Jupp, S., Bechhofer, S., Stevens, R.: SKOS with OWL: Don’t be full-ish! In: Presented at the CEUR Workshop Proceedings (2009)

  86. 86.

    Nowroozi, M., Mirzabeigi, M., Sotudeh, H.: The comparison of thesaurus and ontology: case of ASIS&T web-based thesaurus and designed ontology. Libr. Hi Tech. (2018). https://doi.org/10.1108/lht-03-2017-0060

    Article  Google Scholar 

  87. 87.

    Hoeppe, G.: Representing representation. Sci. Technol. Hum. Values 40, 1077–1092 (2015). https://doi.org/10.1177/0162243915594025

    Article  Google Scholar 

  88. 88.

    de Almeida Campos, M.L., Gomes, H.E.: Ontology: several theories on the representation of knowledge domains. Knowl. Organ. 44, 178–186 (2017). https://doi.org/10.5771/0943-7444-2017-3-178

    Article  Google Scholar 

  89. 89.

    Kless, D., Milton, S., Kazmierczak, E., Lindenthal, J.: Thesaurus and ontology structure: Formal and pragmatic differences and similarities. J. Assoc. Inf. Sci. Technol. 66, 1348–1366 (2015). https://doi.org/10.1002/asi.23268

    Article  Google Scholar 

  90. 90.

    Spero, S.E.: LCSH is to thesaurus as doorbell is to mammal: visualizing structural problems in the library of congress subject headings. In: Metadata for Semantic and Social Applications: Proceedings of the International Conference on Dublin Core and Metadata Applications, p. 203 (2008)

  91. 91.

    Schwarz, U., Smith, B.: Ontological relations. In: Munn, K., Smith, B. (eds.) Applied Ontology An Introduction. De Gruyter, Berlin (2008)

    Google Scholar 

  92. 92.

    Fauconnier, G., Turner, M.: The Way We Think: Conceptual Blending and the Mind’s Hidden Complexities. Basic Books, New York (2003)

    Google Scholar 

  93. 93.

    Wilmont, I., Hengeveld, S., Barendsen, E., Hoppenbrouwers, S.: Cognitive mechanisms of conceptual modelling. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) Conceptual Modeling, pp. 74–87. Springer, Berlin (2013)

    Chapter  Google Scholar 

  94. 94.

    Zeng, M.L., Mayr, P.: Knowledge organization systems (KOS) in the semantic web: a multi-dimensional review. Int. J. Digit. Libr. (2018). https://doi.org/10.1007/s00799-018-0241-2

    Article  Google Scholar 

  95. 95.

    Kless, D., Lindenthal, J., Milton, S., Kazmierczak, E.: Interoperability of knowledge organization systems with and through ontologies. In: Slavic, A., Civallero, E. (eds.) Classification and Ontology: Formal Approaches and Access to Knowledge: Proceedings of the International UDC Seminar 19–20 September 2011, The Hague, The Netherlands, Organized by UDC Consortium, The Hague, pp. 55–74. Ergon, Würzburg (2011)

  96. 96.

    Wittgenstein, L.: Tractatus Logico-Philosophicus. Routledge, London (2001)

    MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manolis Peponakis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peponakis, M., Mastora, A., Kapidakis, S. et al. Expressiveness and machine processability of Knowledge Organization Systems (KOS): an analysis of concepts and relations. Int J Digit Libr 20, 433–452 (2019). https://doi.org/10.1007/s00799-019-00269-0

Download citation

Keywords

  • Knowledge Organization Systems (KOS)
  • Ontologies
  • Semantic web
  • Computational linguistics
  • Expressiveness
  • Machine processability