International Journal on Digital Libraries

, Volume 20, Issue 4, pp 433–452 | Cite as

Expressiveness and machine processability of Knowledge Organization Systems (KOS): an analysis of concepts and relations

  • Manolis PeponakisEmail author
  • Anna Mastora
  • Sarantos Kapidakis
  • Martin Doerr


This study considers the expressiveness (that is, the expressive power or expressivity) of different types of Knowledge Organization Systems (KOS) and discusses its potential to be machine-processable in the context of the semantic web. For this purpose, the theoretical foundations of KOS are reviewed based on conceptualizations introduced by the Functional Requirements for Subject Authority Data (FRSAD) and the Simple Knowledge Organization System (SKOS); natural language processing techniques are also implemented. Applying a comparative analysis, the dataset comprises a thesaurus (Eurovoc), a subject headings system (LCSH) and a classification scheme (DDC). These are compared with an ontology (CIDOC-CRM) by focusing on how they define and handle concepts and relations. It was observed that LCSH and DDC focus on the formalism of character strings (nomens) rather than on the modelling of semantics; their definition of what constitutes a concept is quite fuzzy, and they comprise a large number of complex concepts. By contrast, thesauri have a coherent definition of what constitutes a concept, and apply a systematic approach to the modelling of relations. Ontologies explicitly define diverse types of relations, and are by their nature machine-processable. The paper concludes that the potential of both the expressiveness and machine processability of each KOS is extensively regulated by its structural rules. It is harder to represent subject headings and classification schemes as semantic networks with nodes and arcs, while thesauri are more suitable for such a representation. In addition, a paradigm shift is revealed which focuses on the modelling of relations between concepts, rather than the concepts themselves.


Knowledge Organization Systems (KOS) Ontologies Semantic web Computational linguistics Expressiveness Machine processability 



  1. 1.
    Kuhn, T.: A survey and classification of controlled natural languages. Comput. Linguist. 40, 121–170 (2014). CrossRefGoogle Scholar
  2. 2.
    Stock, W.G.: Concepts and semantic relations in information science. J. Am. Soc. Inf. Sci. Technol. 61, 1951–1969 (2010). CrossRefGoogle Scholar
  3. 3.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284, 34–43 (2001). CrossRefGoogle Scholar
  4. 4.
    Antoniou, G., Van Harmelen, F.: A Semantic Web Primer. MIT Press, Cambridge (2008)Google Scholar
  5. 5.
    Smiraglia, R.P.: The Elements of Knowledge Organization. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  6. 6.
    Hjørland, B.: Semantics and knowledge organization. Annu. Rev. Inf. Sci. Technol. 41, 367–405 (2008). CrossRefGoogle Scholar
  7. 7.
    Hjørland, B.: Concepts, paradigms and knowledge organization. In: Gnoli, C., Mazzocchi, F. (eds.) Paradigms and Conceptual Systems in Knowledge Organization: Proceedings of the 11th International ISKO Conference, 23–26 February 2010, Rome, Italy, pp. 38–42. Ergon, Würzburg (2010)Google Scholar
  8. 8.
    Margolis, E., Laurence, S.: Concepts (2011). Accessed 30 May 2018
  9. 9.
    Lakoff, G.: Women, Fire, and Dangerous Things: What Categories Reveal about the Mind. University of Chicago Press, Chicago (1990)Google Scholar
  10. 10.
    Rips, L.J., Smith, E.E., Medin, D.L.: Concepts and categories: memory, meaning, and metaphysics. In: Holyoak, K.J., Morrison, R.G. (eds.) The Oxford Handbook of Thinking and Reasoning, pp. 177–209. Oxford University Press, Oxford (2013)Google Scholar
  11. 11.
    Lakoff, G., Johnson, M.: Metaphors We Live By. University of Chicago Press, Chicago (2003)CrossRefGoogle Scholar
  12. 12.
    Pinker, S.: The Language Instinct: How the Mind Creates Language. Harper Perennial Modern Classics, New York (2007)Google Scholar
  13. 13.
    Smiraglia, R., den Heuvel, C.V.: Classifications and concepts: towards an elementary theory of knowledge interaction. J. Doc. 69, 360–383 (2013). CrossRefGoogle Scholar
  14. 14.
    Blair, D.: Wittgenstein, Language and Information: “Back to the Rough Ground!”. Springer, Dordrecht (2006)CrossRefGoogle Scholar
  15. 15.
    Jacob, E.K.: Classification and categorization: a difference that makes a difference. Libr. Trends. 52, 515–540 (2004)Google Scholar
  16. 16.
    Hjørland, B.: Is classification necessary after Google? J. Doc. 68, 299–317 (2012). CrossRefGoogle Scholar
  17. 17.
    Zavalina, O.L.: Subject access: conceptual models, functional requirements, and empirical data. J. Libr. Metadata 12, 140–163 (2012). CrossRefGoogle Scholar
  18. 18.
    Svenonius, E.: LCSH: semantics, syntax and specificity. Cat. Classif. Q. 29, 17–30 (2000). CrossRefGoogle Scholar
  19. 19.
    Salah, A.A., Gao, C., Suchecki, K., Scharnhorst, A., Smiraglia, R.P.: The evolution of classification systems: ontogeny of the UDC. In: Neelameghan, A., Raghavan, K.S. (eds.) Categories, Contexts and Relations in Knowledge Organization: Proceedings of the 12th International ISKO Conference, 6–9 August 2012, Mysore, India, pp. 51–57. Ergon, Würzburg (2012)Google Scholar
  20. 20.
    Mai, J.-E.: A postmodern theory of knowledge organization. In: Woods, L. (ed.) ASIS’99: Proceedings of the 62nd ASIS Annual Meeting, Washington, DC, October 31–November 4, 1999: Knowledge, Creation, Organization and Use, pp. 547–556. Information Today, Medford, NJ (1999)Google Scholar
  21. 21.
    Szostak, R.: Complex concepts into basic concepts. J. Am. Soc. Inf. Sci. Technol. 62, 2247–2265 (2011). CrossRefGoogle Scholar
  22. 22.
    Hjørland, B.: Concept theory. J. Am. Soc. Inf. Sci. Technol. 60, 1519–1536 (2009). CrossRefGoogle Scholar
  23. 23.
    Hjørland, B., Pedersen, K.N.: A substantive theory of classification for information retrieval. J. Doc. 61, 582–597 (2005). CrossRefGoogle Scholar
  24. 24.
    Mai, J.-E.: The modernity of classification. J. Doc. 67, 710–730 (2011). CrossRefGoogle Scholar
  25. 25.
    Olson, H.A.: Difference, culture and change: the untapped potential of LCSH. Cat. Classif. Q. 29, 53–71 (2000). CrossRefGoogle Scholar
  26. 26.
    Olson, H.A.: The power to name: representation in library catalogs. Signs 26, 639–668 (2001)CrossRefGoogle Scholar
  27. 27.
    Sperberg-McQueen, C.M.: Classification and its structures. In: Schreibman, S., Siemens, R., Unsworth, J. (eds.) A Companion to Digital Humanities. Blackwell, Oxford (2004)Google Scholar
  28. 28.
    Alexiev, B., Marksbury, N.: Terminology as organized knowledge. In: Gnoli, C., Mazzocchi, F. (eds.) Paradigms and Conceptual Systems in Knowledge Organization: Proceedings of the 11th International ISKO Conference, 23–26 February 2010, Rome, Italy, pp. 363–370. Ergon, Würzburg (2010)Google Scholar
  29. 29.
    L’Homme, M.-C., Bernier-Colborne, G.: Terms as labels for concepts, terms as lexical units: A comparative analysis in ontologies and specialized dictionaries. Appl. Ontol. 7, 387–400 (2012). CrossRefGoogle Scholar
  30. 30.
    Goguen, J.A.J.: Concept representation in natural and artificial languages: axioms, extensions and applications for fuzzy sets. Int. J. Man Mach. Stud. 6, 513–561 (1974). MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Clarke, S.D.: Thesaural relationships. In: Bean, C.A., Green, R. (eds.) Relationships in the Organization of Knowledge, pp. 37–52. Springer, Amsterdam (2001)CrossRefGoogle Scholar
  32. 32.
    Green, R.: Relationships in the organization of knowledge: an overview. In: Bean, C.A., Green, R. (eds.) Relationships in the Organization of Knowledge, pp. 3–18. Springer, Amsterdam (2001)CrossRefGoogle Scholar
  33. 33.
    Engerer, V.: Control and syntagmatization: vocabulary requirements in information retrieval thesauri and natural language lexicons. J. Assoc. Inf. Sci. Technol. 68, 1480–1490 (2017). CrossRefGoogle Scholar
  34. 34.
    IFLA: Functional Requirements for Subject Authority Data (FRSAD): A Conceptual Model. IFLA, Edinburgh (2010)Google Scholar
  35. 35.
    Furner, J.: FRSAD and the ontology of subjects of works. Cat. Classif. Q. 50, 494–516 (2012). CrossRefGoogle Scholar
  36. 36.
    Gemberling, T.: Thema and FRBR’s third group. Cat. Classif. Q. 48, 445–449 (2010). CrossRefGoogle Scholar
  37. 37.
    Panzer, M.: Two tales: aligning FRSAD with SKOS. In: Boteram, F., Gödert, W., Hubrich, J. (eds.) Concepts in Context: Proceedings of the Cologne Conference on Interoperability and Semantics in Knowledge Organization, July 19th–20th, 2010, pp. 157–168. Ergon, Würzburg (2010)Google Scholar
  38. 38.
    O’Neill, E.T., Kammerer, K.A., Bennett, R.: The aboutness of words. J. Assoc. Inf. Sci. Technol. 68, 2471–2483 (2017). CrossRefGoogle Scholar
  39. 39.
    BBC: The man who has focused on one word for 23 years (2017). Accessed 30 May 2018
  40. 40.
    Peponakis, M.: In the name of the name: RDF literals, ER attributes and the potential to rethink the structures and visualizations of catalogs. Inf. Technol. Libr. 35, 19–38 (2016). CrossRefGoogle Scholar
  41. 41.
    Nelson, S.J., Johnston, W.D., Humphreys, B.L.: Relationships in medical subject headings (MeSH). In: Bean, C.A., Green, R. (eds.) Relationships in the Organization of Knowledge, pp. 171–184. Springer, Amsterdam (2001)CrossRefGoogle Scholar
  42. 42.
    IFLA: IFLA Library Reference Model: A Conceptual Model for Bibliographic Information. IFLA, Edinburgh (2017)Google Scholar
  43. 43.
    Ben Abacha, A., Zweigenbaum, P.: MEANS: a medical question-answering system combining NLP techniques and semantic Web technologies. Inf. Process. Manag. 51, 570–594 (2015). CrossRefGoogle Scholar
  44. 44.
    Shiri, A.: Linked data meets big data: a knowledge organization systems perspective. Adv. Classif. Res. Online. 24, 16–20 (2014). CrossRefGoogle Scholar
  45. 45.
    W3C: SKOS Simple Knowledge Organization System Reference. W3C, Cambridge (2009)Google Scholar
  46. 46.
    Baker, T., Bechhofer, S., Isaac, A., Miles, A., Schreiber, G., Summers, E.: Key choices in the design of simple knowledge organization system (SKOS). Web Semant. Sci. Serv. Agents World Wide Web 20, 35–49 (2013). CrossRefGoogle Scholar
  47. 47.
    Maltese, V., Farazi, F.: Towards the integration of knowledge organization systems with the linked data cloud. In: Slavic, A., Civallero, E. (eds.) Classification and Ontology: Formal Approaches and Access to Knowledge: Proceedings of the International UDC Seminar 19–20 September 2011, The Hague, the Netherlands, Organized by UDC Consortium, The Hague, pp. 75–90. Ergon, Würzburg (2011)Google Scholar
  48. 48.
    W3C: SKOS eXtension for Labels (SKOS-XL) Namespace Document—HTML Variant. W3C, Cambridge (2009)Google Scholar
  49. 49.
    Mader, C., Haslhofer, B., Isaac, A.: Finding quality issues in SKOS vocabularies. In: Zaphiris, P., Buchanan, G., Rasmussen, E., Loizides, F. (eds.) Theory and Practice of Digital Libraries. Springer, Paphos (2012)Google Scholar
  50. 50.
    Kless, D., Jansen, L., Milton, S.: A content-focused method for re-engineering thesauri into semantically adequate ontologies using OWL. Semant. Web 7, 543–576 (2016). CrossRefGoogle Scholar
  51. 51.
    Jain, P., Hitzler, P., Yeh, P.Z., Verma, K., Sheth, A.: Linked data is merely more data. In: Brickley, D., Chaudhri, V.K., Halpin, H., McGuinness, D. (eds.) Linked Data Meets Artificial Intelligence, pp. 82–86. AAAI Press, California (2010)Google Scholar
  52. 52.
    Comrie, B.: Language universals and linguistic typology: syntax and morphology. University of Chicago Press, Chicago (1989)Google Scholar
  53. 53.
    Stump, G.T.: Inflectional morphology: a theory of paradigm structure. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  54. 54.
    Pirkola, A.: Morphological typology of languages for IR. J. Doc. 57, 330–348 (2001). CrossRefGoogle Scholar
  55. 55.
    Prokopidis, P., Georgantopoulos, B., Papageorgiou, H.: A suite of NLP tools for Greek. In: Proceedings of the 10th International Conference of Greek Linguistics, Komotini, Greece (2011)Google Scholar
  56. 56.
    de Abreu, S.C., Vieira, R.: RelP: portuguese open relation extraction. Knowl. Organ. 44, 163–177 (2017). CrossRefGoogle Scholar
  57. 57.
    Bean, C.A., Green, R., Myaeng, S.H.: Introduction. In: Green, R., Bean, C.A., Myaeng, S.H. (eds.) The Semantics of Relationships, pp. vii–xvi. Springer, Amsterdam (2002)zbMATHGoogle Scholar
  58. 58.
    Wacholder, N., Liu, L.: User preference: a measure of query-term quality. J. Am. Soc. Inf. Sci. Technol. 57, 1566–1580 (2006). CrossRefGoogle Scholar
  59. 59.
    Lioma, C., Ounis, I.: A syntactically-based query reformulation technique for information retrieval. Inf. Process. Manag. 44, 143–162 (2008). CrossRefzbMATHGoogle Scholar
  60. 60.
    Murphy, G.L.: The Big Book of Concepts. MIT Press, Cambridge (2002)CrossRefGoogle Scholar
  61. 61.
    Mastora, A., Peponakis, M., Kapidakis, S.: SKOS concepts and natural language concepts: an analysis of latent relationships in KOSs. J. Inf. Sci. 43, 492–508 (2017). CrossRefGoogle Scholar
  62. 62.
    Johansson, I.: Four kinds of Is_a relation. In: Munn, K., Smith, B. (eds.) Applied Ontology: An Introduction, pp. 235–254. De Gruyter, Berlin (2008)Google Scholar
  63. 63.
    Peters, I., Weller, K.: Paradigmatic and syntagmatic relations in knowledge organization systems. Inf. Wiss. Prax. 59, 100–107 (2008)Google Scholar
  64. 64.
    ISO: ISO 25964-1: Information and Documentation—Thesauri and Interoperability with Other Vocabularies—Part 1: Thesauri for Information Retrieval. International Organization for Standardization (ISO), Geneva (2011)Google Scholar
  65. 65.
    Aitchison, J., Clarke, S.D.: The thesaurus: a historical viewpoint, with a look to the future. Cat. Classif. Q. 37, 5–21 (2004). CrossRefGoogle Scholar
  66. 66.
    Doerr, M.: Semantic problems of thesaurus mapping. J. Digit. Inf. 1 (2001).
  67. 67.
    Stellato, A.: Dictionary, thesaurus or ontology? Disentangling our choices in the semantic web jungle. J. Integr. Agric. 11, 710–719 (2012). CrossRefGoogle Scholar
  68. 68.
    Alexiev, V., Isaac, A., Lindenthal, J.: On the composition of ISO 25964 hierarchical relations (BTG, BTP, BTI). Int. J. Digit. Libr. 17, 39–48 (2016). CrossRefGoogle Scholar
  69. 69.
    Stone, A.T.: The LCSH century: a brief history of the library of congress subject headings, and introduction to the centennial essays. Cat. Classif. Q. 29, 1–15 (2000). CrossRefGoogle Scholar
  70. 70.
    Heiner-Freiling, M.: Survey on subject heading languages used in national libraries and bibliographies. Cat. Classif. Q. 29, 189–198 (2000). CrossRefGoogle Scholar
  71. 71.
    Harper, C.A.: Encoding library of congress subject headings in SKOS: authority control for the semantic web. In: Proceedings of the 2006 International Conference on Dublin Core and Metadata Applications. Dublin Core Metadata Initiative, Manzanillo, Mexico (2006)Google Scholar
  72. 72.
    Summers, E., Isaac, A., Redding, C., Krech, D.: LCSH, SKOS and linked data. In: Greenberg, J., Wolfgang, K. (eds.) Metadata for Semantic and Social Applications: Proceedings of the 2008 International Conference on Dublin Core and Metadata Applications, pp. 25–33. Dublin Core Metadata Initiative, Berlin, Germany (2008)Google Scholar
  73. 73.
    Kwaśnik, B.H.: Approaches to providing context in knowledge representation structures. In: Slavic, A., Civallero, E. (eds.) Classification and Ontology: Formal Approaches and Access to Knowledge: Proceedings of the International UDC Seminar 19–20 September 2011, The Hague, The Netherlands, Organized by UDC Consortium, The Hague, pp. 9–23. Ergon, Würzburg (2011)Google Scholar
  74. 74.
    Panzer, M.: Cool URIs for the DDC: towards web-scale accessibility of a large classification system. In: Greenberg, J., Wolfgang, K. (eds.) Metadata for Semantic and Social Applications: Proceedings of the 2008 International Conference on Dublin Core and Metadata Applications, pp. 183–190. Berlin, Germany (2008)Google Scholar
  75. 75.
    Hjørland, B.: The concept of ‘subject’ in information science. J. Doc. 48, 172–200 (1992). CrossRefGoogle Scholar
  76. 76.
    Green, R., Panzer, M.: Relations in the notational hierarchy of the dewey decimal classification. In: Slavic, A., Civallero, E. (eds.) Classification and Ontology: Formal Approaches and Access to Knowledge: Proceedings of the International UDC Seminar 19–20 September 2011, The Hague, The Netherlands, Organized by UDC Consortium, The Hague, pp. 161–176. Ergon, Würzburg (2011)Google Scholar
  77. 77.
    Mazzocchi, F.: Relations in KOS: Is it possible to couple a common nature with different roles? J. Doc. 73, 368–383 (2017). CrossRefGoogle Scholar
  78. 78.
    Mitchell, J.S., Zeng, M.L., Žumer, M.: Modeling classification systems in multicultural and multilingual contexts. Cat. Classif. Q. 52, 90–101 (2014). CrossRefGoogle Scholar
  79. 79.
    Poli, R., Obrst, L.: The interplay between ontology as categorial analysis and ontology as technology. In: Poli, R., Healy, M., Kameas, A. (eds.) Theory and Applications of Ontology: Computer Applications, pp. 1–26. Springer, Amsterdam (2010)CrossRefGoogle Scholar
  80. 80.
    Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing? Int. J. Hum. Comput. Stud. 43, 907–928 (1995). CrossRefGoogle Scholar
  81. 81.
    Kohne, J.: Ontology, its origins and its meaning in information science. In: Hagengruber, R., Riss, U. (eds.) Philosophy, Computing and Information Science, pp. 85–89. Pickering & Chatto, London (2014)Google Scholar
  82. 82.
    Pattuelli, M.C., Provo, A., Thorsen, H.: Ontology building for linked open data: a pragmatic perspective. J. Libr. Metadata 15, 265–294 (2015). CrossRefGoogle Scholar
  83. 83.
    Doerr, M.: The CIDOC conceptual reference module: an ontological approach to semantic interoperability of metadata. AI Mag. 24, 75 (2003). CrossRefGoogle Scholar
  84. 84.
    ISO: ISO 21127: Information and Documentation: A Reference Ontology for the Interchange of Cultural Heritage Information. ISO, Geneva (2006)Google Scholar
  85. 85.
    Jupp, S., Bechhofer, S., Stevens, R.: SKOS with OWL: Don’t be full-ish! In: Presented at the CEUR Workshop Proceedings (2009)Google Scholar
  86. 86.
    Nowroozi, M., Mirzabeigi, M., Sotudeh, H.: The comparison of thesaurus and ontology: case of ASIS&T web-based thesaurus and designed ontology. Libr. Hi Tech. (2018). CrossRefGoogle Scholar
  87. 87.
    Hoeppe, G.: Representing representation. Sci. Technol. Hum. Values 40, 1077–1092 (2015). CrossRefGoogle Scholar
  88. 88.
    de Almeida Campos, M.L., Gomes, H.E.: Ontology: several theories on the representation of knowledge domains. Knowl. Organ. 44, 178–186 (2017). CrossRefGoogle Scholar
  89. 89.
    Kless, D., Milton, S., Kazmierczak, E., Lindenthal, J.: Thesaurus and ontology structure: Formal and pragmatic differences and similarities. J. Assoc. Inf. Sci. Technol. 66, 1348–1366 (2015). CrossRefGoogle Scholar
  90. 90.
    Spero, S.E.: LCSH is to thesaurus as doorbell is to mammal: visualizing structural problems in the library of congress subject headings. In: Metadata for Semantic and Social Applications: Proceedings of the International Conference on Dublin Core and Metadata Applications, p. 203 (2008)Google Scholar
  91. 91.
    Schwarz, U., Smith, B.: Ontological relations. In: Munn, K., Smith, B. (eds.) Applied Ontology An Introduction. De Gruyter, Berlin (2008)Google Scholar
  92. 92.
    Fauconnier, G., Turner, M.: The Way We Think: Conceptual Blending and the Mind’s Hidden Complexities. Basic Books, New York (2003)Google Scholar
  93. 93.
    Wilmont, I., Hengeveld, S., Barendsen, E., Hoppenbrouwers, S.: Cognitive mechanisms of conceptual modelling. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) Conceptual Modeling, pp. 74–87. Springer, Berlin (2013)CrossRefGoogle Scholar
  94. 94.
    Zeng, M.L., Mayr, P.: Knowledge organization systems (KOS) in the semantic web: a multi-dimensional review. Int. J. Digit. Libr. (2018). CrossRefGoogle Scholar
  95. 95.
    Kless, D., Lindenthal, J., Milton, S., Kazmierczak, E.: Interoperability of knowledge organization systems with and through ontologies. In: Slavic, A., Civallero, E. (eds.) Classification and Ontology: Formal Approaches and Access to Knowledge: Proceedings of the International UDC Seminar 19–20 September 2011, The Hague, The Netherlands, Organized by UDC Consortium, The Hague, pp. 55–74. Ergon, Würzburg (2011)Google Scholar
  96. 96.
    Wittgenstein, L.: Tractatus Logico-Philosophicus. Routledge, London (2001)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Information Science and InformaticsIonian UniversityCorfuGreece
  2. 2.National Hellenic Research Foundation/National Documentation CentreAthensGreece
  3. 3.Institute of Computer ScienceFORTHHeraklionGreece

Personalised recommendations