Advertisement

Building and querying semantic layers for web archives (extended version)

  • Pavlos Fafalios
  • Helge Holzmann
  • Vaibhav Kasturia
  • Wolfgang Nejdl
Article

Abstract

Web archiving is the process of collecting portions of the Web to ensure that the information is preserved for future exploitation. However, despite the increasing number of web archives worldwide, the absence of efficient and meaningful exploration methods still remains a major hurdle in the way of turning them into a usable and useful information source. In this paper, we focus on this problem and propose an RDF/S model and a distributed framework for building semantic profiles (“layers”) that describe semantic information about the contents of web archives. A semantic layer allows describing metadata information about the archived documents, annotating them with useful semantic information (like entities, concepts, and events), and publishing all these data on the Web as Linked Data. Such structured repositories offer advanced query and integration capabilities, and make web archives directly exploitable by other systems and tools. To demonstrate their query capabilities, we build and query semantic layers for three different types of web archives. An experimental evaluation showed that a semantic layer can answer information needs that existing keyword-based systems are not able to sufficiently satisfy.

Keywords

Web archives Semantic layer Profiling Linked data Exploratory search 

Notes

Acknowledgements

The work was partially funded by the European Commission for the ERC Advanced Grant ALEXANDRIA (No. 339233).

References

  1. 1.
    Alam, S., Nelson, M.L., Van de Sompel, H., Balakireva, L.L., Shankar, H., Rosenthal, D.S.: Web archive profiling through cdx summarization. In: International Conference on Theory and Practice of Digital Libraries, Springer (2015)Google Scholar
  2. 2.
    Alam, S., Nelson, M.L., Van de Sompel, H., Rosenthal, D.S.: Web archive profiling through fulltext search. In: International Conference on Theory and Practice of Digital Libraries, Springer (2016)Google Scholar
  3. 3.
    Alexander, K., Hausenblas, M.: Describing linked datasets-on the design and usage of void, the vocabulary of interlinked datasets. In: In Linked Data on the Web Workshop (LDOW 09), in conjunction with 18th International World Wide Web Conference (WWW 09, Citeseer) (2009)Google Scholar
  4. 4.
    AlSum, A., Weigle, M.C., Nelson, M.L., Van de Sompel, H.: Profiling web archive coverage for top-level domain and content language. Int. J. Digit. Libr. 14(3–4), 149–166 (2014)CrossRefGoogle Scholar
  5. 5.
    Anand, A., Bedathur, S., Berberich, K., Schenkel, R., Tryfonopoulos, C.: Everlast: a distributed architecture for preserving the web. In: 9th ACM/IEEE-CS Joint Conference on Digital libraries, ACM (2009)Google Scholar
  6. 6.
    Arenas, M., CuencaGrau, B., Kharlamov, E., Marciuska, S., Zheleznyakov, D., Jimenez-Ruiz, E.: SemFacet: semantic faceted search over YAGO. In: 23rd International Conference on World Wide Web, ACM (2014)Google Scholar
  7. 7.
    Antoniou, G., Van Harmelen, F.: Web ontology language: owl. In: Handbook on Ontologies, pp. 67–92. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Blanco, R., Ottaviano, G., Meij, E.: Fast and space-efficient entity linking for queries. In: Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, pp. 179–188. ACM (2015)Google Scholar
  9. 9.
    Blanco, R., Ottaviano, G., Meij, E.: Fast and space-efficient entity linking in queries. In: Eight ACM International Conference on Web Search and Data Mining, ACM, New York, NY, USA (2015)Google Scholar
  10. 10.
    Bornand, N.J., Balakireva, L., Van de Sompel, H.: Routing memento requests using binary classifiers. In: 16th ACM/IEEE-CS on Joint Conference on Digital Libraries, ACM (2016)Google Scholar
  11. 11.
    Brickley, D., Guha, R.V., McBride, B.: Rdf schema 1.1. W3C Recomm. 25, 2004–2014 (2014)Google Scholar
  12. 12.
    Fafalios, P., Tzitzikas, Y.: Stochastic re-ranking of biomedical search results based on extracted entities. J. Assoc. Inf. Sci. Technol. (JASIST) 68(11), 2572–2586 (2017)CrossRefGoogle Scholar
  13. 13.
    Fafalios, P., Baritakis, M., Tzitzikas, Y.: Exploiting linked data for open and configurable named entity extraction. Int. J. Artif. Intell. Tools 24(02), 1540012 (2015)CrossRefGoogle Scholar
  14. 14.
    Fafalios, P., Yannakis, T., Tzitzikas, Y.: Querying the web of data with sparql-ld. In: International Conference on Theory and Practice of Digital Libraries, Springer, pp. 175–187 (2016)Google Scholar
  15. 15.
    Fafalios, P., Iosifidis, V., Stefanidis, K., Ntoutsi, E.: Multi-aspect entity-centric analysis of big social media archives. In: 21st International Conference on Theory and Practice of Digital Libraries (TPDL’17), Thessaloniki, Greece (2017)Google Scholar
  16. 16.
    Fafalios, P., Kasturia, V., Nejdl, W.: Towards a ranking model for semantic layers over digital archives. In: ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL’17 - Posters & Demonstrations)), Toronto, Ontario, Canada (2017)Google Scholar
  17. 17.
    Fernando, Z.T., Marenzi, I., Nejdl, W., Kalyani, R.: Archiveweb: Collaboratively extending and exploring web archive collections. In: International Conference on Theory and Practice of Digital Libraries, Springer (2016)Google Scholar
  18. 18.
    Ferragina, P., Scaiella, U.: Tagme: on-the-fly annotation of short text fragments (by wikipedia entities). In: 19th ACM international conference on Information and knowledge management, ACM (2010)Google Scholar
  19. 19.
    Ferré, S.: Sparklis: an expressive query builder for SPARQL endpoints with guidance in natural language. Semant. Web 8(3), 405–418 (2017)CrossRefGoogle Scholar
  20. 20.
    Gossen, G., Demidova, E., Risse, T.: Extracting event-centric document collections from large-scale web archives. In: International Conference on Theory and Practice of Digital Libraries (2017)Google Scholar
  21. 21.
    Heath, T., Bizer, C.: Linked data: evolving the web into a global data space. Synth. Lectures Semantic Web Theory Technol. 1(1), 1–136 (2011)CrossRefGoogle Scholar
  22. 22.
    Hoffart, J., Yosef, M.A., Bordino, I., Fürstenau, H., Pinkal, M., Spaniol, M., Taneva, B., Thater, S., Weikum, G.: Robust disambiguation of named entities in text. In: Conference on Empirical Methods in Natural Language Processing (2011)Google Scholar
  23. 23.
    Holzmann, H., Anand, A.: Tempas: temporal archive search based on tags. In: International Conference on World Wide Web (2016)Google Scholar
  24. 24.
    Holzmann, H., Risse, T.: Accessing web archives from different perspectives with potential synergies. In: 2nd International Conference on Web Archives/Web Archiving Week (RESAW/IIPC) (2017)Google Scholar
  25. 25.
    Holzmann, H., Goel, V., Anand, A.: Archivespark: efficient web archive access, extraction and derivation. In: 16th ACM/IEEE-CS on Joint Conference on Digital Libraries, ACM (2016)Google Scholar
  26. 26.
    Holzmann, H., Nejdl, W., Anand, A.: Exploring web archives through temporal anchor texts. In: Proceedings of the 2017 ACM on Web Science Conference, ACM, pp 289–298 (2017)Google Scholar
  27. 27.
    Jackson, A., Lin, J., Milligan, I., Ruest, N.: Desiderata for exploratory search interfaces to web archives in support of scholarly activities. In: 16th ACM/IEEE-CS on Joint Conference on Digital Libraries, ACM (2016)Google Scholar
  28. 28.
    Kanhabua, N., Kemkes, P., Nejdl, W., Nguyen, T.N., Reis, F., Tran, N.K.: How to search the internet archive without indexing it. In: 20th International Conference on Theory and Practice of Digital Libraries, Springer (2016)Google Scholar
  29. 29.
    Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., et al.: Dbpedia-a large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web 6(2), 167–195 (2015)Google Scholar
  30. 30.
    Lin, J., Gholami, M., Rao, J.: Infrastructure for supporting exploration and discovery in web archives. In: International Conference on World Wide Web (2014)Google Scholar
  31. 31.
    Marchionini, G.: Exploratory search: from finding to understanding. Commun. ACM 49(4), 41–46 (2006)CrossRefGoogle Scholar
  32. 32.
    Matthews, M., Tolchinsky, P., Blanco, R., Atserias, J., Mika, P., Zaragoza, H.: Searching through time in the New York times. In: 4th Workshop on Human-Computer Interaction and Information Retrieval (2010)Google Scholar
  33. 33.
    Moro, A., Raganato, A., Navigli, R.: Entity linking meets word sense disambiguation: a unified approach. Trans. Assoc. Comput. Linguist. 2, 231–244 (2014)Google Scholar
  34. 34.
    Padia, K., AlNoamany, Y., Weigle, M.C.: Visualizing digital collections at archive-it. In: 12th ACM/IEEE-CS joint conference on Digital Libraries, pp. 15–18. ACM (2012)Google Scholar
  35. 35.
    Page, K.R., Bechhofer, S., Fazekas, G., Weigl, D.M., Wilmering, T.: Realising a layered digital library: exploration and analysis of the live music archive through linked data. In: Digital Libraries (JCDL), 2017 ACM/IEEE Joint Conference on, IEEE, pp 1–10 (2017)Google Scholar
  36. 36.
    PrudHommeaux, E., Seaborne, A., et al.: Sparql query language for rdf. W3C recommendation 15 (2008)Google Scholar
  37. 37.
    Buil-Aranda, C., Arenas, M., Corcho, O., Polleres, A.: Federating queries in SPARQL 1.1: syntax, semantics and evaluation. Web Semant. Sci. Serv. Agents. World Wide Web 18(1), 1–17 (2013)Google Scholar
  38. 38.
    Sacco, G.M., Tzitzikas, Y.: Dynamic Taxonomies and Faceted Search: Theory, Practice, and Experience, vol. 25. Springer, New York (2009)Google Scholar
  39. 39.
    Sanderson, R., Ciccarese, P., Van de Sompel, H.: Designing the W3C open annotation data model. In: Proceedings of the 5th Annual ACM Web Science Conference, pp. 366–375. ACM (2013)Google Scholar
  40. 40.
    Sandhaus, E.: The New Tork Times annotated corpus. Linguist. Data Consort. Philadelphia 6(12), e26752 (2008)Google Scholar
  41. 41.
    Singh, J., Nejdl, W., Anand, A.: Expedition: a time-aware exploratory search system designed for scholars. In: SIGIR conference on Research and Development in Information Retrieval (2016)Google Scholar
  42. 42.
    Singh, J., Nejdl, W., Anand, A.: History by diversity: helping historians search news archives. In: ACM Conference on Human Information Interaction and Retrieval (2016)Google Scholar
  43. 43.
    Van de Sompel, H., Nelson, M., Sanderson, R.: HTTP Framework for Time-Based Access to Resource States—Memento. RFC 7089 (2013). https://doi.org/10.17487/RFC7089
  44. 44.
    Tran, N.K., Tran, T., Niederée, C.: Beyond time: dynamic context-aware entity recommendation. In: European Semantic Web Conference, Springer (2017)Google Scholar
  45. 45.
    Tzitzikas, Y., Manolis, N., Papadakos, P.: Faceted exploration of RDF/S datasets: a survey. J. Intell. Inf. Syst. 48(2), 329–364 (2017)CrossRefGoogle Scholar
  46. 46.
    Unger, C., Bühmann, L., Lehmann, J., Ngonga Ngomo, A.C., Gerber, D., Cimiano, P.: Template-based question answering over rdf data. In: 21st international Conference on World Wide Web, ACM (2012)Google Scholar
  47. 47.
    Vo, K.D., Tran, T., Nguyen, T.N., Zhu, X., Nejdl, W.: Can we find documents in web archives without knowing their contents? In: ACM Conference on Web Science (2016)Google Scholar
  48. 48.
    Weikum, G., Spaniol, M., Ntarmos, N., Triantafillou, P., Benczúr, A., Kirkpatrick, S., Rigaux, P., Williamson, M.: Longitudinal analytics on web archive data: it’s about time! In: 5th Biennial Conference on Innovative Data Systems Research, CIDR 2011 (2011)Google Scholar
  49. 49.
    Whitelaw, M.: Generous interfaces for digital cultural collections. Digital Humanit. Q. 9(1), 1 (2015)Google Scholar
  50. 50.
    Xiong, C., Power, R., Callan, J.: Explicit semantic ranking for academic search via knowledge graph embedding. In: Proceedings of the 26th International Conference on World Wide Web, International World Wide Web Conferences Steering Committee, pp. 1271–1279 (2017)Google Scholar
  51. 51.
    Zhang, L., Rettinger, A., Zhang, J.: A probabilistic model for time-aware entity recommendation. In: International Semantic Web Conference, Springer (2016)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.L3S Research CenterLeibniz University of HannoverHannoverGermany

Personalised recommendations