Skip to main content

Advertisement

Log in

Vitamin D metabolism in cancer: potential feasibility of vitamin D metabolism blocking therapy

  • Review
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

In this review, we discuss the possibility of the vitamin D metabolizing enzyme CYP24A1 being a therapeutic target for various tumors including breast, colorectal and prostate tumors. Given the pleiotropic cellular activity of vitamin D, its deficiency impairs its physiological function in target cells and results in various pathologies including cancer. In addition, accumulated data have shown that elevated expression of CYP24A1 promotes carcinogenesis in various cancer subtypes by decreasing the bioavailability of vitamin D metabolites. Thus, we propose the potential feasibility of vitamin D metabolism-blocking therapy in various types of human malignancies that express constitutive CYP24A1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The datasets generated and/or analyzed during the present study are available from the corresponding author upon reasonable request. In addition, the data generated in the present study are included in the figures and/or tables of this article.

References

  1. Kulie T, Groff A, Redmer J, Hounshell J, Schrager S (2009) Vitamin D: an evidence-based review. J Am Board Fam Med 22:698–760

    Article  PubMed  Google Scholar 

  2. Dusso AS, Brown AJ, Slatopolsky E (2005) Vitamin D. Am J Physiol Renal Physiol 289(1):8–28

    Article  Google Scholar 

  3. Bikle DD (2021) Vitamin D: Production, Metabolism and Mechanisms of Action. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dhatariya K, Dungan K, Hershman JM, Hofland J, Kalra S, Kaltsas G, Koch C, Kopp P, Korbonits M, Kovacs CS, Kuohung W, Laferrère B, Levy M, McGee EA, McLachlan R, Morley JE, New M, Purnell J, Sahay R, Singer F, Sperling MA, Stratakis CA, Trence DL, Wilson DP (eds). South Dartmouth (MA): MDText.com

  4. Kim D (2017) The role of vitamin D in thyroid diseases. Int J Mol Sci 18:1949

    Article  PubMed  PubMed Central  Google Scholar 

  5. Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G (2016) Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev 96(1):365–408

    Article  CAS  PubMed  Google Scholar 

  6. Trump DL, Aragon-Ching JB (2018) Vitamin D in prostate cancer. Asian J Androl 20(3):244–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou J, Ge X, Fan X, Wang J, Miao L, Hang D (2021) Associations of vitamin D status with colorectal cancer risk and survival. Int J Cancer 149:606–614

    Article  CAS  PubMed  Google Scholar 

  8. Negri M, Gentile A, de Angelis C, Montò T, Patalano R, Colao A, Pivonello R, Pivonello C (2020) Vitamin D-induced molecular mechanisms to potentiate cancer therapy and to reverse drug-resistance in cancer cells. Nutrients 12:1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kamiya S, Nakamori Y, Takasawa A, Takasawa K, Kyuno D, Ono Y, Magara K, Osanai M (2023) Suppression of vitamin D metabolizing enzyme CYP24A1 provides increased sensitivity to chemotherapeutic drugs in breast cancer. Oncol Rep, in press.

  10. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  11. Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sergeev IN (2014) Vitamin D-mediated apoptosis in cancer and obesity. Horm Mol Biol Clin Investig 20:43–49

    CAS  PubMed  Google Scholar 

  13. Wong RS (2011) Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 30:87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rajendran V, Jain MV (2018) In vitro tumorigenic assay: colony forming assay for cancer stem cells. Methods Mol Biol 1692:89–95

    Article  CAS  PubMed  Google Scholar 

  15. Luo W, Johnson CS, Trump DL (2016) Vitamin D signaling modulators in cancer therapy. In: Litwack G (ed) Vitamins & Hormones. Academic Press, Cambridge

    Google Scholar 

  16. Townsend K, Banwell CM, Guy M, Colston KW, Mansi JL, Stewart PM, Campbell MJ, Hewison M (2005) Autocrine metabolism of vitamin D in normal and malignant breast tissue. Clin Cancer Res 11:3579–3586

    Article  CAS  PubMed  Google Scholar 

  17. Osanai M, Lee G (2016) CYP24A1-induced vitamin D insufficiency promotes breast cancer growth. Oncol Rep 36:2755–2762

    Article  CAS  PubMed  Google Scholar 

  18. Nakajima M, Yokoi T (2014) MicroRNA: regulation of P450 and pharmacogenetics. In: Padmanabhan S (ed) Handbook of pharmacogenomics and stratified medicine. Academic Press, Cambridge, pp 385–401

    Chapter  Google Scholar 

  19. Komagata S, Nakajima M, Takagi S, Mohri T, Taniya T, Yokoi T (2009) Human CYP24 catalyzing the inactivation of calcitriol is post-transcriptionally regulated by miR-125b. Mol Pharmacol 76:702–709

    Article  CAS  PubMed  Google Scholar 

  20. Matilainen JM, Malinen M, Turunen MM, Carlberg C, Väisänen S (2010) The number of vitamin D receptor binding sites defines the different vitamin D responsiveness of the CYP24 gene in malignant and normal mammary cells. J Biol Chem 285:24174–24183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grant WB, Garland CF (2004) A critical review of studies on vitamin D in relation to colorectal cancer. Nutr Cancer 48:115–123

    Article  CAS  PubMed  Google Scholar 

  22. Giovannucci E (2006) The epidemiology of vitamin D and colorectal cancer: recent findings. Curr Opin Gastroenterol 22:24–29

    Article  CAS  PubMed  Google Scholar 

  23. Klampfer L (2014) Vitamin D and colon cancer. World J Gastrointest Oncol 6:430–437

    Article  PubMed  PubMed Central  Google Scholar 

  24. Diaz GD, Paraskeva C, Thomas MG, Binderup L, Hague A (2000) Apoptosis is induced by the active metabolite of vitamin D3 and its analogue EB1089 in colorectal adenoma and carcinoma cells: possible implications for prevention and therapy. Cancer Res 60:2304–2312

    CAS  PubMed  Google Scholar 

  25. Tangpricha V, Flanagan JN, Whitlatch LW, Tseng CC, Chen TC, Holt PR, Lipkin MS, Holick MF (2001) 25-hydroxyvitamin D-1alpha-hydroxylase in normal and malignant colon tissue. Lancet 357:1673–1674

    Article  CAS  PubMed  Google Scholar 

  26. Dong LM, Ulrich CM, Hsu L, Duggan DJ, Benitez DS, White E, Slattery ML, Farin FM, Makar KW, Carlson CS, Caan BJ, Potter JD, Peters U (2009) Vitamin D related genes, CYP24A1 and CYP27B1, and colon cancer risk. Cancer Epidemiol Biomarkers Prev 18:2540–2548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Höbaus J, Hummel DM, Thiem U, Fetahu IS, Aggarwal A, Müllauer L, Heller G, Egger G, Mesteri I, Baumgartner-Parzer S, Kallay E (2013) Increased copy-number and not DNA hypomethylation causes overexpression of the candidate proto-oncogene CYP24A1 in colorectal cancer. Int J Cancer 133:1380–1388

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jacobs ET, Pelt CV, Forster RE, Zaidi W, Hibler EA, Galligan MA, Haussler MR, Jurutka PW (2013) CYP24A1 and CYP27B1 polymorphisms modulate vitamin D metabolism in colon cancer cells. Cancer Res 73:2563–2573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sadeghi H, Nazemalhosseini-Mojarad E, Yassaee VR, Savabkar S, Ghasemian M, Aghdaei HA, Zali MR, Mirfakhraie R (2020) Could CYP24A1 promoter methylation status affect the gene expression in the colorectal cancer patients. Meta Gene 24:100656

    Article  Google Scholar 

  30. Höbaus J, Fetahu ISh, Khorchide M, Manhardt T, Kallay E (2013) Epigenetic regulation of the 1,25-dihydroxyvitamin D3 24-hydroxylase (CYP24A1) in colon cancer cells. J Steroid Biochem Mol Biol 136:296–299

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fang Z, Xiong Y, Zhang C, Li J, Liu L, Li M, Zhang W, Wan J (2010) Coexistence of copy number increases of ZNF217 and CYP24A1 in colorectal cancers in a Chinese population. Oncol Lett 1:925–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Roff A, Wilson RT (2008) A novel SNP in a vitamin D response element of the CYP24A1 promoter reduces protein binding, transactivation, and gene expression. J Steroid Biochem Mol Biol 112:47–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chai L, Ni J, Ni X, Zhang N, Liu Y, Ji Z, Zhao X, Zhu X, Zhao B, Xin G, Wang Y, Yang F, Sun L, Zhu X, Bao W, Shui X, Wang F, Chen F, Yang Z (2021) Association of CYP24A1 gene polymorphism with colorectal cancer in the Jiamusi population. PLoS ONE 16:e0253474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sadeghi H, Nazemalhosseini-Mojarad E, Yaghoob-Taleghani M, Amin-Beidokhti M, Yassaee VR, Aghdaei HA, Zali MR, Mirfakhraie R (2018) miR-30a promoter variation contributes to the increased risk of colorectal cancer in an Iranian population. J Cell Biochem. https://doi.org/10.1002/jcb.28047

    Article  PubMed  Google Scholar 

  35. Luo W, Karpf AR, Deeb KK, Muindi JR, Morrison CD, Johnson CS, Trump DL (2010) Epigenetic regulation of vitamin D 24-hydroxylase/CYP24A1 in human prostate cancer. Cancer Res 70:5953–5962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Deeb KK, Luo W, Karpf AR, Omilian AR, Bshara W, Tian L, Tangrea MA, Morrison CD, Johnson CS, Trump DL (2011) Differential vitamin D 24-hydroxylase/CYP24A1 gene promoter methylation in endothelium from benign and malignant human prostate. Epigenetics 6:994–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Novakovic B, Sibson M, Ng HK, Manuelpillai U, Rakyan V, Down T, Beck S, Fournier T, Evain-Brion D, Dimitriadis E, Craig JM, Morley R, Saffery R (2009) Placenta-specific methylation of the vitamin D 24-hydroxylase gene: implications for feedback autoregulation of active vitamin D levels at the fetomaternal interface. J Biol Chem 284:14838–14848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ramnath N, Nadal E, Jeon CK, Sandoval J, Colacino J, Rozek LS, Christensen PJ, Esteller M, Beer DG, Kim SH (2014) Epigenetic regulation of vitamin D metabolism in human lung adenocarcinoma. J Thorac Oncol 4:473–482

    Article  Google Scholar 

  39. Miller GJ, Stapleton GE, Hedlund TE, Moffat KA (1995) Vitamin D receptor expression, 24-hydroxylase activity, and inhibition of growth by 1alpha,25-dihydroxyvitamin D3 in seven human prostatic carcinoma cell lines. Clin Cancer Res 1:997–1003

    CAS  PubMed  Google Scholar 

  40. Ruijter E, van de Kaa C, Miller G, Ruiter D, Debruyne F, Schalken J (1999) Molecular genetics and epidemiology of prostate carcinoma. Endocr Rev 20:22–45

    Article  CAS  PubMed  Google Scholar 

  41. Ahn J, Albanes D, Peters U, Schatzkin A, Lim U, Freedman M, Chatterjee N, Andriole GL, Leitzmann MF, Hayes RB, For the Prostate, Lung, Colorectal, and Ovarian Trial Project Team (2007) Dairy products, calcium intake, and risk of prostate cancer in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiol Biomarkers Prev 16:2623–2630

    Article  CAS  PubMed  Google Scholar 

  42. Tannour-Louet M, Lewis SK, Louet JF, Stewart J, Addai JB, Sahin A, Vangapandu HV, Lewis AL, Dittmar K, Pautler RG, Zhang L, Smith RG, Lamb DJ (2014) Increased expression of CYP24A1 correlates with advanced stages of prostate cancer and can cause resistance to vitamin D3-based therapies. FASEB J 28:364–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Farhan H, Wahala K, Cross HS (2003) Genistein inhibits vitamin D hydroxylases CYP24 and CYP27B1 expression in prostate cells. J Steroid Biochem Mol Biol 84:423–429

    Article  CAS  PubMed  Google Scholar 

  44. Swami S, Krishnan AV, Moreno J, Bhattacharyya RB, Peehl DM, Feldman D (2007) Calcitriol and genistein actions to inhibit the prostaglandin pathway: potential combination therapy to treat prostate cancer. J Nutr 137(1 Suppl):205–210

    Article  Google Scholar 

  45. Zhang Q, Kanterewicz B, Buch S, Petkovich M, Parise R, Beumer J, Lin Y, Diergaarde B, Hershberger PA (2012) CYP24 inhibition preserves 1α,25-dihydroxyvitamin D(3) anti-proliferative signaling in lung cancer cells. Mol Cell Endocrinol 355:153–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ly LH, Zhao XY, Holloway L, Feldman D (1999) Liarozole acts synergistically with 1alpha,25-dihydroxyvitamin D3 to inhibit growth of DU 145 human prostate cancer cells by blocking 24-hydroxylase activity. Endocrinology 140:2071–2076

    Article  CAS  PubMed  Google Scholar 

  47. Zhao J, Tan BK, Marcelis S, Verstuyf A, Bouillon R (1996) Enhancement of antiproliferative activity of 1alpha,25-dihydroxyvitamin D3 (analogs) by cytochrome P450 enzyme inhibitors is compound- and cell-type specific. J Steroid Biochem Mol Biol 57:197–202

    Article  CAS  PubMed  Google Scholar 

  48. Rao A, Woodruff RD, Wade WN, Kute TE, Cramer SD (2002) Genistein and vitamin D synergistically inhibit human prostatic epithelial cell growth. J Nutr 132:3191–3194

    Article  CAS  PubMed  Google Scholar 

  49. Rodriguez GC, Turbov J, Rosales R, Yoo J, Hunn J, Zappia KJ, Lund K, Barry CP, Rodriguez IV, Pike JW, Conrads TP, Darcy KM, Maxwell GL, Hamilton CA, Syed V, Thaete LG (2016) Progestins inhibit calcitriol-induced CYP24A1 and synergistically inhibit ovarian cancer cell viability: an opportunity for chemoprevention. Gynecol Oncol 143:159–167

    Article  CAS  PubMed  Google Scholar 

  50. Lee LR, Teng PN, Nguyen H, Hood BL, Kavandi L, Wang G, Turbov JM, Thaete LR, Hamilton CA, Maxwell GL, Rodriguez GC, Conrads TP, Syed V (2013) Progesterone enhances calcitriol antitumor activity by upregulating vitamin D receptor expression and promoting apoptosis in endometrial cancer cells. Cancer Prev Res (Phila) 6:731–743

    Article  CAS  PubMed  Google Scholar 

  51. Lou YR, Tuohimaa P (2006) Androgen enhances the antiproliferative activity of vitamin D3 by suppressing 24-hydroxylase expression in LNCaP cells. J Steroid Biochem Mol Biol 99:44–49

    Article  CAS  PubMed  Google Scholar 

  52. Yee SW, Campbell MJ, Simons C (2006) Inhibition of Vitamin D3 metabolism enhances VDR signaling in androgen-independent prostate cancer cells. J Steroid Biochem Mol Biol 98:228–235

    Article  CAS  PubMed  Google Scholar 

  53. Josephia R, Muindi W-D, Yingyu M, Engler KL, Kong RX, Trump DL, Johnson CS (2010) CYP24A1 inhibition enhances the antitumor activity of calcitriol. Endocrinol 151:4301–4312

    Article  Google Scholar 

  54. Dovnik A, Dovnik NF (2020) Vitamin D and ovarian cancer: systematic review of the literature with a focus on molecular mechanisms. Cells. https://doi.org/10.3390/cells9020335

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Certain parts of this study are included in the Japanese-language PhD thesis of the author SK at Sapporo Medical University School of Medicine.

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

SK and YN carried out the cell culture experiments and immunohistochemistry. AT, KT, DK, YO and KM performed the histological examination of breast cancer. SK and MO were major contributors to the writing of the manuscript and confirmed the authenticity of all of the raw data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Makoto Osanai.

Ethics declarations

Ethics approval/consent to participate and publication

This study was reviewed and approved by the Institutional Ethics Committee (Approval Number: 4-1-44) and Institutional Review Board (IRB study number: 312‐230) of Sapporo Medical University. Specimens of 136 cases of breast cancer collected by surgical resection during the period from 2011 to 2014 were used in this study. The Ethics Committee waived the need to obtain written informed consent from the patients for the use of human tissues owing to the retrospective nature of the study. The research was conducted in accordance with the Helsinki Declaration. The researchers involved in this study had no access to information that could identify individual participants during or after data collection.

Conflict of interests

The authors declare that they have no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamiya, S., Nakamori, Y., Takasawa, A. et al. Vitamin D metabolism in cancer: potential feasibility of vitamin D metabolism blocking therapy. Med Mol Morphol 56, 85–93 (2023). https://doi.org/10.1007/s00795-023-00348-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-023-00348-x

Keywords

Navigation