Skip to main content

Advertisement

Log in

A novel pathologic marker, indoleamine 2,3-dioxygenase 1, for the cholangiopathy of immune checkpoint inhibitors-induced immune mediated hepatotoxicity as adverse events and the prediction of additional ursodeoxycholic acid treatment

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Immune-related adverse events (irAE) has been clarified according the usage of immune checkpoint inhibitors(ICI). We primarily found indoleamine 2,3-dioxygenase 1(IDO-1) as a histologic biomarker for the cholangiopathy of primary biliary cholangitis(PBC). In this study, we evaluated the utility of IDO-1 in identifying ICI-induced immune-mediated hepatotoxicity(IMH). Immunostaining for IDO-1 using liver sections of PBC, ICI-induced IMH and controls, revealed that IDO-1 expression in bile ducts is mostly restricted in PBC and ICI-induced IMH. In ICI-induced IMH, IDO-1-positive bile ducts is found in 2/2 cases of cholangitis type and also positive/focal ducts in 11/15 cases of hepatitis type. Moreover, in 8/13 positive/focal cases, ursodeoxycholic acid as well as steroids were needed to improve liver dysfunction, but just one case (1/4) in IDO-1-negative cases. One IDO-1 positive case of hepatitis type did not receive additional UDCA, but biliary enzymes worsen. In vitro study using cultured human biliary epithelial cells revealed that IDO-1 induction was found with the stimulation of IFN-γ. In conclusion, the presence of IDO-1-positive cells is found in bile ducts in hepatitic type as well as sclerosing cholangitis of ICI-induced IMH. IDO-1 is surely a valuable pathologic marker for diagnosing ICI-induced IMH and also for predicting an additional need of UDCA in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jenne CN, Kubes P (2013) Immune surveillance by the liver. Nat Immunol 14(10):996–1006

    Article  CAS  PubMed  Google Scholar 

  2. Chamoto K, Al-Habsi M, Honjo T (2017) Role of PD-1 in immunity and diseases. Curr Top Microbiol Immunol 410:75–97

    CAS  PubMed  Google Scholar 

  3. Postow MA, Sidlow R, Hellmann MD (2018) Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med 378(2):158–168

    Article  CAS  PubMed  Google Scholar 

  4. Jamal S, Hudson M, Fifi-Mah A, Ye C (2020) Immune-related adverse events associated with cancer immunotherapy: a review for the practicing rheumatologist. J Rheumatol 47(2):166–175

    Article  CAS  PubMed  Google Scholar 

  5. Peeraphatdit TB, Wang J, Odenwald MA, Hu S, Hart J, Charlton MR (2020) Hepatotoxicity from immune checkpoint inhibitors: a systematic review and management recommendation. Hepatology 72(1):315–329

    Article  PubMed  Google Scholar 

  6. Ladak K, Bass AR (2018) Checkpoint inhibitor-associated autoimmunity. Best Pract Res Clin Rheumatol 32(6):781–802

    Article  PubMed  Google Scholar 

  7. Wang W, Lie P, Guo M, He J (2017) Risk of hepatotoxicity in cancer patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis of published data. Int J Cancer 141(5):1018–1028

    Article  CAS  PubMed  Google Scholar 

  8. De Martin E, Michot JM, Papouin B, Champiat S, Mateus C, Lambotte O et al (2018) Characterization of liver injury induced by cancer immunotherapy using immune checkpoint inhibitors. J Hepatol 68(6):1181–1190

    Article  PubMed  Google Scholar 

  9. Zen Y, Yeh MM (2018) Hepatotoxicity of immune checkpoint inhibitors: a histology study of seven cases in comparison with autoimmune hepatitis and idiosyncratic drug-induced liver injury. Mod Pathol 31(6):965–973

    Article  PubMed  Google Scholar 

  10. Harada K, Hiep NC, Ohira H (2017) Challenges and difficulties in pathological diagnosis of autoimmune hepatitis. Hepatol Res 47(10):963–971

    Article  CAS  PubMed  Google Scholar 

  11. Abe K, Takahashi A, Nozawa Y, Imaizumi H, Hayashi M, Okai K et al (2014) The utility of IgG, IgM, and CD138 immunohistochemistry in the evaluation of autoimmune liver diseases. Med Mol Morphol 47(3):162–168

    Article  CAS  PubMed  Google Scholar 

  12. Kawakami H, Tanizaki J, Tanaka K, Haratani K, Hayashi H, Takeda M et al (2017) Imaging and clinicopathological features of nivolumab-related cholangitis in patients with non-small cell lung cancer. Invest New Drugs 35(4):529–536

    Article  CAS  PubMed  Google Scholar 

  13. Kuroda N, Nakamura S, Miyazaki K, Inoue K, Ohara M, Mizuno K et al (2009) Chronic sclerosing pyelitis with an increased number of IgG4-positive plasma cells. Med Mol Morphol 42(4):236–238

    Article  CAS  PubMed  Google Scholar 

  14. Nguyen Canh H, Harada K (2016) Adult bile duct strictures: differentiating benign biliary stenosis from cholangiocarcinoma. Med Mol Morphol 49(4):189–202

    Article  PubMed  Google Scholar 

  15. Scoazec JY, Feldmann G (1990) Both macrophages and endothelial cells of the human hepatic sinusoid express the CD4 molecule, a receptor for the human immunodeficiency virus. Hepatology 12(3 Pt 1):505–510

    Article  CAS  PubMed  Google Scholar 

  16. Yoshida R, Imanishi J, Oku T, Kishida T, Hayaishi O (1981) Induction of pulmonary indoleamine 2,3-dioxygenase by interferon. Proc Natl Acad Sci USA 78(1):129–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Godin-Ethier J, Hanafi LA, Piccirillo CA, Lapointe R (2011) Indoleamine 2,3-dioxygenase expression in human cancers: clinical and immunologic perspectives. Clin Cancer Res 17(22):6985–6991

    Article  CAS  PubMed  Google Scholar 

  18. Prendergast GC, Malachowski WP, DuHadaway JB, Muller AJ (2017) Discovery of IDO1 inhibitors: from bench to bedside. Can Res 77(24):6795–6811

    Article  CAS  Google Scholar 

  19. Affolter T, Llewellyn HP, Bartlett DW, Zong Q, Xia S, Torti V et al (2019) Inhibition of immune checkpoints PD-1, CTLA-4, and IDO1 coordinately induces immune-mediated liver injury in mice. PLoS ONE 14(5):e0217276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nakamura M, Nishida N, Kawashima M, Aiba Y, Tanaka A, Yasunami M et al (2012) Genome-wide association study identifies TNFSF15 and POU2AF1 as susceptibility loci for primary biliary cirrhosis in the Japanese population. Am J Hum Genet 91(4):721–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Harada K, Ohba K, Ozaki S, Isse K, Hirayama T, Wada A et al (2004) Peptide antibiotic human beta-defensin-1 and -2 contribute to antimicrobial defense of the intrahepatic biliary tree. Hepatology 40(4):925–932

    CAS  PubMed  Google Scholar 

  22. Mizuno K, Ito T, Ishigami M, Ishizu Y, Kuzuya T, Honda T et al (2020) Real world data of liver injury induced by immune checkpoint inhibitors in Japanese patients with advanced malignancies. J Gastroenterol 55(6):653–661

    Article  CAS  PubMed  Google Scholar 

  23. Takikawa H, Onji M (2005) A proposal of the diagnostic scale of drug-induced liver injury. Hepatol Res 32(4):250–251

    Article  PubMed  Google Scholar 

  24. Gelsomino F, Vitale G, D’Errico A, Bertuzzi C, Andreone P, Ardizzoni A (2017) Nivolumab-induced cholangitic liver disease: a novel form of serious liver injury. Ann Oncol 28(3):671–672

    Article  CAS  PubMed  Google Scholar 

  25. Nadeau BA, Fecher LA, Owens SR, Razumilava N (2018) Liver toxicity with cancer checkpoint inhibitor therapy. Semin Liver Dis 38(4):366–378

    Article  CAS  PubMed  Google Scholar 

  26. Zen Y, Yeh MM (2019) Checkpoint inhibitor-induced liver injury: a novel form of liver disease emerging in the era of cancer immunotherapy. Semin Diagn Pathol 36(6):434–440

    Article  PubMed  Google Scholar 

  27. Poisson J, Lemoinne S, Boulanger C, Durand F, Moreau R, Valla D et al (2017) Liver sinusoidal endothelial cells: physiology and role in liver diseases. J Hepatol 66(1):212–227

    Article  CAS  PubMed  Google Scholar 

  28. Chen S, Corteling R, Stevanato L, Sinden J (2012) Natural inhibitors of indoleamine 3,5-dioxygenase induced by interferon-gamma in human neural stem cells. Biochem Biophys Res Commun 429(1–2):117–123

    Article  CAS  PubMed  Google Scholar 

  29. Liu H, Liu L, Liu K, Bizargity P, Hancock WW, Visner GA (2009) Reduced cytotoxic function of effector CD8+ T cells is responsible for indoleamine 2,3-dioxygenase-dependent immune suppression. J Immunol 183(2):1022–1031

    Article  CAS  PubMed  Google Scholar 

  30. Ito H, Hoshi M, Ohtaki H, Taguchi A, Ando K, Ishikawa T et al (2010) Ability of IDO to attenuate liver injury in alpha-galactosyl ceramide-induced hepatitis model. J Immunol 185(8):4554–4560

    Article  CAS  PubMed  Google Scholar 

  31. Nagano J, Shimizu M, Hara T, Shirakami Y, Kochi T, Nakamura N et al (2013) Effects of indoleamine 2,3-dioxygenase deficiency on high-fat diet-induced hepatic inflammation. PLoS ONE 8(9):e73404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leung BS, Stout LE, Shaskan EG, Thompson RM (1992) Differential induction of indoleamine-2,3-dioxygenase (IDO) by interferon-gamma in human gynecologic cancer cells. Cancer Lett 66(1):77–81

    Article  CAS  PubMed  Google Scholar 

  33. Shimoda S, Hisamoto S, Harada K, Iwasaka S, Chong Y, Nakamura M et al (2015) Natural killer cells regulate T cell immune responses in primary biliary cirrhosis. Hepatology 62(6):1817–1827

    Article  CAS  PubMed  Google Scholar 

  34. Harada K, Isse K, Kamihira T, Shimoda S, Nakanuma Y (2005) Th1 cytokine-induced downregulation of PPAR gamma in human biliary cells relates to cholangitis in primary biliary cirrhosis. Hepatology 41(6):1329–1338

    Article  CAS  PubMed  Google Scholar 

  35. Harada K, Van de Water WJ, Leung PS, Coppel RL, Ansari A, Nakanuma Y et al (1997) In situ nucleic acid hybridization of cytokines in primary biliary cirrhosis: predominance of the Th1 subset. Hepatology 25(4):791–796

    Article  CAS  PubMed  Google Scholar 

  36. Shimoyama S, Kawata K, Ohta K, Chida T, Suzuki T, Tsuneyama K et al (2021) Ursodeoxycholic acid impairs liver-infiltrating T-cell chemotaxis through IFN-gamma and CX3CL1 production in primary biliary cholangitis. Eur J Immunol 51(6):1519–1530

    Article  CAS  PubMed  Google Scholar 

  37. Harada K, Ozaki S, Gershwin ME, Nakanuma Y (1997) Enhanced apoptosis relates to bile duct loss in primary biliary cirrhosis. Hepatology 26(6):1399–1405

    Article  CAS  PubMed  Google Scholar 

  38. Harada K, Nakanuma Y (2012) Cholangiopathy with respect to biliary innate immunity. Inter j hepatol 2012:793569

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by KAKENIHI Grant (No. 17H04058) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (K.H.) and Health Labor Science Research Grants from Research on Measures for Intractable Diseases, the Intractable Hepato-Biliary Diseases Study Group in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Harada.

Ethics declarations

Conflict of interest

No conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshimura, K., Tamano, Y., Nguyen Canh, H. et al. A novel pathologic marker, indoleamine 2,3-dioxygenase 1, for the cholangiopathy of immune checkpoint inhibitors-induced immune mediated hepatotoxicity as adverse events and the prediction of additional ursodeoxycholic acid treatment. Med Mol Morphol 56, 106–115 (2023). https://doi.org/10.1007/s00795-022-00344-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-022-00344-7

Keywords

Navigation