Skip to main content

Advertisement

Log in

Anti-inflammatory and antifibrotic effects of CBP/β-catenin inhibitor for hepatocytes: small molecular inhibitor, OP-724 possibly improves liver function

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Wnt/β-catenin signals are associated with several functions, including organ fibrosis. A synthetic small molecule, OP-724 (prodrug of C-82), an inhibitor of cyclic AMP response element-binding protein (CREB)-binding protein (CBP)/β-catenin, has demonstrated antifibrotic activity in mouse models of hepatic fibrosis. OP-724 is mediated by profibrotic and antifibrotic cells, such as hepatic stellate cells, macrophages, and neutrophils. In this study, the direct effects of C-82 on hepatocytes in hepatic inflammation were investigated. Immortalized human hepatocytes were pretreated with inflammatory cytokines. Moreover, the alteration of mRNA and protein expressions of cytokines and chemokines associated with hepatic inflammation and fibrosis, and of mitochondria-related molecules after C-82 treatment were analyzed in this study. The mRNA expression of several proinflammatory and profibrotic chemokines was upregulated by the stimulation of these inflammatory cytokines. In addition, this increase was prevented by C-82. In particular, the protein secretion of CCL2, CCL5, CXCL1, CXCL9, and CXCL10 was noticeably upregulated by TNFα and prevented by additional C-82. Moreover, C-82 increased the VEGF-A and FGF-2 proteins, categorized as anti-inflammatory and antifibrotic molecules, respectively. It also increased the expression of mitochondrial components and mitochondrial membrane potential. In conclusion, C-82 inhibits hepatocyte-mediated proinflammation and fibrogenesis. It also directly activates the mitochondrial function, thus improving liver dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, [KH], upon reasonable request.

References

  1. Kisseleva T, Brenner D (2021) Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol 18:151–166

    Article  PubMed  Google Scholar 

  2. Kimura M, Nishikawa K, Osawa Y, Imamura J, Yamaji K, Harada K, Yatsuhashi H, Murata K, Miura K, Tanaka A, Kanto T, Kohara M, Kamisawa T, Kimura K (2022) Inhibition of CBP/β-catenin signaling ameliorated fibrosis in cholestatic liver disease. Hepatol Commun 6:2732–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kahn M (2014) Can we safely target the WNT pathway? Nat Rev Drug Discov 13:513–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Teo JL, Ma H, Nguyen C, Lam C, Kahn M (2005) Specific inhibition of CBP/beta-catenin interaction rescues defects in neuronal differentiation caused by a presenilin-1 mutation. Proc Natl Acad Sci U S A 102:12171–12176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Henderson WR Jr, Chi EY, Ye X, Nguyen C, Tien YT, Zhou B, Borok Z, Knight DA, Kahn M (2010) Inhibition of Wnt/beta-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc Natl Acad Sci U S A 107:14309–14314

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lai KKY, Nguyen C, Lee KS, Lee A, Lin DP, Teo JL, Kahn M (2019) Convergence of canonical and non-canonical wnt signal: differential Kat3 coactivator usage. Curr Mol Pharmacol 12:167–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thomas PD, Kahn M (2016) Kat3 coactivators in somatic stem cells and cancer stem cells: biological roles, evolution, and pharmacologic manipulation. Cell Biol Toxicol 32:61–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Edeling M, Ragi G, Huang S, Pavenstädt H, Susztak K (2016) Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nat Rev Nephrol 12:426–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Monga SP (2015) β-Catenin signaling and roles in liver homeostasis, injury, and tumorigenesis. Gastroenterology 148:1294–1310

    Article  CAS  PubMed  Google Scholar 

  10. Osawa Y, Oboki K, Imamura J, Kojika E, Hayashi Y, Hishima T, Saibara T, Shibasaki F, Kohara M, Kimura K (2015) Inhibition of cyclic adenosine monophosphate (cAMP)-response element-binding protein (CREB)-binding protein (CBP)/beta-catenin reduces liver fibrosis in mice. EBioMedicine 2:1751–1758

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kahn M (2011) Symmetric division versus asymmetric division: a tale of two coactivators. Future Med Chem 3:1745–1763

    Article  CAS  PubMed  Google Scholar 

  12. Henderson WR, Chi EY, Ye X, Nguyen C, Tien Y-T, Zhou B, Borok Z, Knight DA, Kahn M (2010) Inhibition of Wnt/β-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc Natl Acad Sci U S A 107:14309–14314

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hao S, He W, Li Y, Ding H, Hou Y, Nie J, Hou FF, Kahn M, Liu Y (2011) Targeted inhibition of beta-catenin/CBP signaling ameliorates renal interstitial fibrosis. J Am Soc Nephrol 22:1642–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tokunaga Y, Osawa Y, Ohtsuki T, Hayashi Y, Yamaji K, Yamane D, Hara M, Munekata K, Tsukiyama-Kohara K, Hishima T, Kojima S, Kimura K, Kohara M (2017) Selective inhibitor of Wnt/beta-catenin/CBP signaling ameliorates hepatitis C virus-induced liver fibrosis in mouse model. Sci Rep 7:325

    Article  PubMed  PubMed Central  Google Scholar 

  15. Marra F, Tacke F (2014) Roles for chemokines in liver disease. Gastroenterology 147(577–594):e571

    Google Scholar 

  16. Yoneyama H, Ichida T (2005) Recruitment of dendritic cells to pathological niches in inflamed liver. Med Mol Morphol 38:136–141

    Article  PubMed  Google Scholar 

  17. Middleton P, Vergis N (2021) Mitochondrial dysfunction and liver disease: role, relevance, and potential for therapeutic modulation. Therap Adv Gastroenterol 14:17562848211031394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mansouri A, Gattolliat C-H, Asselah T (2018) Mitochondrial dysfunction and signaling in chronic liver diseases. Gastroenterology 155:629–647

    Article  CAS  PubMed  Google Scholar 

  19. Brault C, Levy P, Bartosch B (2013) Hepatitis C virus-induced mitochondrial dysfunctions. Viruses 5:954–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  21. Kimura K, Kanto T, Shimoda S, Harada K, Kimura M, Nishikawa K, Imamura J, Ogawa E, Saio M, Ikura Y, Okusaka T, Inoue K, Ishikawa T, Ieiri I, Kishimoto J, Todaka K, Kamisawa T (2022) Safety, tolerability, and anti-fibrotic efficacy of the CBP/β-catenin inhibitor PRI-724 in patients with hepatitis C and B virus-induced liver cirrhosis: An investigator-initiated, open-label, non-randomised, multicentre, phase 1/2a study. EBioMedicine 80:104069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, McQuaid S, Gray RT, Murray LJ, Coleman HG, James JA, Salto-Tellez M, Hamilton PW (2017) QuPath: open source software for digital pathology image analysis. Sci Rep 7:16878

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kimura K, Ikoma A, Shibakawa M, Shimoda S, Harada K, Saio M, Imamura J, Osawa Y, Kimura M, Nishikawa K, Okusaka T, Morita S, Inoue K, Kanto T, Todaka K, Nakanishi Y, Kohara M, Mizokami M (2017) Safety, tolerability, and preliminary efficacy of the anti-fibrotic small molecule PRI-724, a CBP/beta-catenin inhibitor, in patients with hepatitis c virus-related cirrhosis: a single-center, open-label, dose escalation phase 1 trial. E BioMedicine 23:79–87

    Google Scholar 

  24. Seki E, Schwabe RF (2015) Hepatic inflammation and fibrosis: Functional links and key pathways. Hepatology 61:1066–1079

    Article  PubMed  Google Scholar 

  25. Berres M-L, Koenen RR, Rueland A, Zaldivar MM, Heinrichs D, Sahin H, Schmitz P, Streetz KL, Berg T, Gassler N, Weiskirchen R, Proudfoot A, Weber C, Trautwein C, Wasmuth HE (2010) Antagonism of the chemokine Ccl5 ameliorates experimental liver fibrosis in mice. J Clin Invest 120:4129–4140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li BH, He FP, Yang X, Chen YW, Fan JG (2017) Steatosis induced CCL5 contributes to early-stage liver fibrosis in nonalcoholic fatty liver disease progress. Transl Res 180(103–117):e104

    Google Scholar 

  27. Shi W-P, Ju D, Li H, Yuan L, Cui J, Luo D, Chen Z-N, Bian H (2018) CD147 Promotes CXCL1 expression and modulates liver fibrogenesis. Int J Mol Sci 19:1145

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hintermann E, Bayer M, Pfeilschifter JM, Luster AD, Christen U (2010) CXCL10 promotes liver fibrosis by prevention of NK cell mediated hepatic stellate cell inactivation. J Autoimmun 35:424–435

    Article  CAS  PubMed  Google Scholar 

  29. Kaffe E, Fiorotto R, Pellegrino F, Mariotti V, Amenduni M, Cadamuro M, Fabris L, Strazzabosco M, Spirli C (2018) β-Catenin and interleukin-1β-dependent chemokine (C-X-C motif) ligand 10 production drives progression of disease in a mouse model of congenital hepatic fibrosis. Hepatology 67:1903–1919

    Article  CAS  PubMed  Google Scholar 

  30. Yoneyama H, Kai Y, Koyama J, Suzuki K, Kawachi H, Narumi S, Ichida T (2007) Neutralization of CXCL10 accelerates liver regeneration in carbon tetrachloride-induced acute liver injury. Med Mol Morphol 40:191–197

    Article  CAS  PubMed  Google Scholar 

  31. Filliol A, Schwabe RF (2020) FoxM1 induces CCl2 secretion from hepatocytes triggering hepatic inflammation, injury, fibrosis, and liver cancer. Cell Mol Gastroenterol Hepatol 9:555–556

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nagata T, Kudo H, Nishino T, Doi Y, Itoh H, Fujimoto S (2005) Increased immunoreactivities against endothelin-converting enzyme-1 and monocyte chemotactic protein-1 in hepatic stellate cells of rat fibrous liver induced by thioacetamide. Med Mol Morphol 38:161–172

    Article  CAS  PubMed  Google Scholar 

  33. Zhang F, Li P, Liu S, Yang M, Zeng S, Deng J, Chen D, Yi Y, Liu H (2021) β-Catenin-CCL2 feedback loop mediates crosstalk between cancer cells and macrophages that regulates breast cancer stem cells. Oncogene 40:5854–5865

    Article  CAS  PubMed  Google Scholar 

  34. Song X, Shen Y, Lao Y, Tao Z, Zeng J, Wang J, Wu H (2019) CXCL9 regulates acetaminophen-induced liver injury via CXCR3. Exp Ther Med 18:4845–4851

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sato-Matsubara M, Matsubara T, Daikoku A, Okina Y, Longato L, Rombouts K, Thuy LTT, Adachi J, Tomonaga T, Ikeda K, Yoshizato K, Pinzani M, Kawada N (2017) Fibroblast growth factor 2 (FGF2) regulates cytoglobin expression and activation of human hepatic stellate cells via JNK signaling. J Biol Chem 292:18961–18972

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yang L, Kwon J, Popov Y, Gajdos GB, Ordog T, Brekken RA, Mukhopadhyay D, Schuppan D, Bi Y, Simonetto D, Shah VH (2014) Vascular endothelial growth factor promotes fibrosis resolution and repair in mice. Gastroenterology 146:1339-1350.e1331

    Article  CAS  PubMed  Google Scholar 

  37. Saraste M (1999) Oxidative phosphorylation at the fin de siècle. Science 283:1488–1493

    Article  CAS  PubMed  Google Scholar 

  38. Simula MP, De Re V (2010) Hepatitis C virus-induced oxidative stress and mitochondrial dysfunction: a focus on recent advances in proteomics. Proteomics Clin Appl 4:782–793

    Article  CAS  PubMed  Google Scholar 

  39. Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, Babenko VA, Zorov SD, Balakireva AV, Juhaszova M, Sollott SJ, Zorov DB (2018) Mitochondrial membrane potential. Anal Biochem 552:50–59

    Article  CAS  PubMed  Google Scholar 

  40. Sakamuru S, Attene-Ramos MS, Xia M (2016) Mitochondrial membrane potential assay. Methods Mol Biol 1473:17–22

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sen P, Gupta K, Kumari A, Singh G, Pandey S, Singh R (2021) Wnt/β-catenin antagonist pyrvinium exerts cardioprotective effects in polymicrobial sepsis model by attenuating calcium dyshomeostasis and mitochondrial dysfunction. Cardiovasc Toxicol 21:517–532

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was conducted and supported by AMED under grant numbers, 18pc0101024s0501 and 17H04058, from the Ministry of Education, Culture, Sports, Science and Technology of Japan (K.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Harada.

Ethics declarations

Conflict of interest

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouchi, H., Mizutani, Y., Yoshimura, K. et al. Anti-inflammatory and antifibrotic effects of CBP/β-catenin inhibitor for hepatocytes: small molecular inhibitor, OP-724 possibly improves liver function. Med Mol Morphol 56, 94–105 (2023). https://doi.org/10.1007/s00795-022-00343-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-022-00343-8

Keywords

Navigation