Skip to main content

Role of repressed microRNAs in endometriosis

Abstract

Endometriosis is a common, estrogen-dependent benign tumor that affect 3–10% women of reproductive age, and is characterized by the ectopic growth of endometrial tissue, which is found primarily in the rectovaginal septum, ovaries, and pelvic peritoneum. To date, accumulating evidence suggests that various epigenetic aberrations, including the expression of aberrant microRNAs (miRNAs), play definite roles in the pathogenesis of endometriosis. This review summarizes the recent findings on the aberrantly repressed miRNAs, as well as their potential roles regarding the pathogenesis of endometriosis.

This is a preview of subscription content, access via your institution.

Fig. 1

Abbreviations

ACTG2:

Smooth-muscle actin isoform γ2

ANGPT2:

Angiopoietin-2

BCAR3:

Breast cancer antiestrogen resistance 3

Bcl-2:

B-cell lymphoma/leukemia-2

COUP-TFII:

Chicken ovalbumin upstream promoter-transcription factor II

COX-2:

Cyclooxygenase-2

CTGF:

Connective tissue growth factor

CYR61:

Cysteine-rich angiogenic inducer 61

DUSP2:

Dual-specificity phosphatase-2

EGR-1:

Early growth response protein 1

EMT:

Epithelial–mesenchymal transition

ERK:

Extracellular signal-regulated kinase

FGF-9:

Fibroblast growth factor-9

IKKβ:

Inhibitor of nuclear factor‑κB kinase subunit β

JAM-A:

Junctional adhesion molecule A

KLF:

Krüppel-like-factor

MALAT1:

Metastasis-associated lung adenocarcinoma transcript 1

miRNAs:

MicroRNAs

MMP:

Matrix metallopeptidase

MSI2:

Musashi-2

N.D.:

Not described

OCT4:

Octamer 4

PAI-1:

Plasminogen activator inhibitor 1

PAK4:

P21-activated kinase 4

PGE2:

Prostaglandin E2

ROCK:

Rho-associated coiled-coil-containing protein kinase

SMARCD1:

SWItch/sucrose nonfermentable-related matrix-associated actin-dependent regulator of chromatin subfamily D member 1

SOX:

Sex-determining region Y-box

STAT3:

Signal transducer and activator of transcription 3

VEGFA:

Vascular endothelial growth factor A

ZEB:

Zinc-finger-enhancer binding protein

References

  1. 1.

    Giudice LC (2010) Clinical practice. Endometriosis N Engl J Med 362:2389–2398

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Giudice LC, Kao LC (2004) Endometriosis. Lancet 364:1789–1799

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Pearce CL, Templeman C, Rossing MA, Lee A, Near AM, Webb PM, Nagle CM, Doherty JA, Cushing-Haugen KL, Wicklund KG, Chang-Claude J, Hein R, Lurie G, Wilkens LR, Carney ME, Goodman MT, Moysich K, Kjaer SK, Hogdall E, Jensen A, Goode EL, Fridley BL, Larson MC, Schildkraut JM, Palmieri RT, Cramer DW, Terry KL, Vitonis AF, Titus LJ, Ziogas A, Brewster W, Anton-Culver H, Gentry-Maharaj A, Ramus SJ, Anderson AR, Brueggmann D, Fasching PA, Gayther SA, Huntsman DG, Menon U, Ness RB, Pike MC, Risch H, Wu AH, Berchuck A, Ovarian Cancer Association Consortium (2012) Association between endometriosis and risk of histological subtypes of ovarian cancer: a pooled analysis of case-control studies. Lancet Oncol 13:385–394

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Bartel DP (2018) Metazoan microRNAs. Cell 173:20–51

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Gebert LFR, MacRae IJ (2019) Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 20:21–37

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13:271–282

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Thomson DW, Dinger ME (2016) Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 17:272–283

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Zhang B, Pan X, Cobb GP, Anderson TA (2007) microRNAs as oncogenes and tumor suppressors. Dev Biol 302:1–12

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Tan W, Liu B, Qu S, Liang G, Luo W, Gong C (2018) MicroRNAs and cancer: key paradigms in molecular therapy. Oncol Lett 15:2735–2742

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Lin S, Gregory RI (2015) MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 15:321–333

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Peng Y, Croce CM (2016) The role of microRNAs in human cancer. Signal Transduct Target Ther 1:15004

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Burney RO, Hamilton AE, Aghajanova L, Vo KC, Nezhat CN, Lessey BA, Giudice LC (2009) MicroRNA expression profiling of eutopic secretory endometrium in women with versus without endometriosis. Mol Hum Reprod 15:625–631

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Ohlsson Teague EMC, Van der Hoek KH, Van der Hoek MB, Perry N, Wagaarachchi P, Robertson SA, Print CG, Hull LM (2009) MicroRNA-regulated pathways associated with endometriosis. Mol Endocrinol 23:265–275

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. 14.

    Ohlsson Teague EMC, Print CG, Hull ML (2010) The role of microRNAs in endometriosis and associated reproductive conditions. Hum Reprod Update 16:142–165

    CAS  Article  Google Scholar 

  15. 15.

    Filigheddu N, Gregnanin I, Porporato PE, Surico D, Perego B, Galli L, Patrignani C, Graziani A, Surico N (2010) Differential expression of microRNAs between eutopic and ectopic endometrium in ovarian endometriosis. J Biomed Biotechnol 2010:369549

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. 16.

    Kuokkanen S, Chen B, Ojalvo L, Benard L, Santoro N, Pollard JW (2010) Genomic profiling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium. Biol Reprod 82:791–801

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Hawkins SM, Creighton CJ, Han DY, Zariff A, Anderson ML, Gunaratne PH, Matzuk MM (2011) Functional microRNA involved in endometriosis. Mol Endocrinol 25:821–832

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Abe W, Nasu K, Nakada C, Kawano Y, Moriyama M, Narahara H (2013) miR-196b targets c-myc and Bcl-2 expression, inhibits proliferation and induces apoptosis in endometriotic stromal cells. Hum Reprod 28:750–761

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Braza-Boïs A, Marí-Alexandre J, Gilabert J, Sánchez-Izquierdo D, España F, Estellés A, Gilabert-Estellés J (2014) MicroRNA expression profile in endometriosis: its relation to angiogenesis and fibrinolytic factors. Hum Reprod 29:978–988

    Article  CAS  Google Scholar 

  20. 20.

    Liu D, Liang Y, Chen M, Yang F, Yao S (2021) Knockdown of circ_0075503 suppresses cell migration and invasion by regulating miR-15a-5p and KLF12 in endometriosis. Mol Cell Biochem. https://doi.org/10.1007/s11010-021-04202-5 (ahead of print)

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Wang X, Ren R, Shao M, Lan J (2020) MicroRNA-16 inhibits endometrial stromal cell migration and invasion through suppression of the inhibitor of nuclear factor-κB kinase subunit β/nuclear factor-κB pathway. Int J Mol Med 46:740–750

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Shen L, Yang S, Huang W, Xu W, Wang Q, Song Y, Liu Y (2013) MicroRNA23a and microRNA23b deregulation derepresses SF-1 and upregulates estrogen signaling in ovarian endometriosis. J Clin Endocrinol Metab 98:1575–1582

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Long M, Wan X, La X, Gong X, Cai X (2015) miR-29c is downregulated in the ectopic endometrium and exerts its effects on endometrial cell proliferation, apoptosis and invasion by targeting c-Jun. Int J Mol Med 35:1119–1125

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Yang WW, Hong L, Xu XX, Wang Q, Huang JL, Jiang L (2017) Regulation of miR-33b on endometriosis and expression of related factors. Eur Rev Med Pharmacol Sci 21:2027–2033

    PubMed  Google Scholar 

  25. 25.

    Luo Y, Wang D, Chen S, Yang Q (2020) The role of miR-34c-5p/Notch in epithelial-mesenchymal transition (EMT) in endometriosis. Cell Signal 72:109666

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Lv X, Chen P, Liu W (2015) Down regulation of MiR-93 contributes to endometriosis through targeting MMP3 and VEGFA. Am J Cancer Res 5:1706–1717

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Meng X, Liu J, Wang H, Chen P, Wang D (2019) MicroRNA-126–5p downregulates BCAR3 expression to promote cell migration and invasion in endometriosis. Mol Cell Endocrinol 494:110486

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Zhang Y, Yan J, Pan X (2019) miR-141-3p affects apoptosis and migration of endometrial stromal cells by targeting KLF-12. Pflugers Arch 471:1055–1063

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Ma L, Li Z, Li W, Ai J, Chen X (2019) MicroRNA-142-3p suppresses endometriosis by regulating KLF9-mediated autophagy in vitro and in vivo. RNA Biol 16:1733–1748

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Adammek M, Greve B, Kässens N, Schneider C, Brüggemann K, Schüring AN, Starzinski-Powitz A, Kiesel L, Götte M (2013) MicroRNA miR-145 inhibits proliferation, invasiveness, and stem cell phenotype of an in vitro endometriosis model by targeting multiple cytoskeletal elements and pluripotency factors. Fertil Steril 99:1346-1355.e5

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Shi XY, Gu L, Chen J, Guo XR, Shi YL (2014) Downregulation of miR-183 inhibits apoptosis and enhances the invasive potential of endometrial stromal cells in endometriosis. Int J Mol Med 33:59–67

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Zhu R, Nasu K, Hijiya N, Yoshihashi M, Hirakawa T, Aoyagi Y, Narahara H (2021) hsa-miR-199a-3p inhibits motility, invasiveness, and contractility of ovarian endometriotic stromal cells. Reprod Sci. https://doi.org/10.1007/s43032-021-00604-4 (ahead of print)

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Hsu CY, Hsieh TH, Tsai CF, Tsai HP, Chen HS, Chang Y, Chuang HY, Lee JN, Hsu YL, Tsai EM (2014) miRNA-199a-5p regulates VEGFA in endometrial mesenchymal stem cells and contributes to the pathogenesis of endometriosis. J Pathol 232:330–343

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Eggers JC, Martino V, Reinbold R, Schäfer SD, Kiesel L, Starzinski-Powitz A, Schüring AN, Kemper B, Greve B, Götte M (2016) microRNA miR-200b affects proliferation, invasiveness and stemness of endometriotic cells by targeting ZEB1, ZEB2 and KLF4. Reprod Biomed Online 32:434–445

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Liang Z, Chen Y, Zhao Y, Xu C, Zhang A, Zhang Q, Wang D, He J, Hua W, Duan P (2017) miR-200c suppresses endometriosis by targeting MALAT1 in vitro and in vivo. Stem Cell Res Ther 8:251

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. 36.

    Zhang D, Li Y, Tian J, Zhang H, Wang S (2015) MiR-202 promotes endometriosis by regulating SOX6 expression. Int J Clin Exp Med 8:17757–17764

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Zhang M, Zhang Y, Li L, Ma L, Zhou C (2020) Dysregulation of miR-202-3p affects migration and invasion of endometrial stromal cells in endometriosis via targeting ROCK1. Reprod Sci 27:731–742

    PubMed  Article  Google Scholar 

  38. 38.

    Zhou CF, Liu MJ, Wang W, Wu S, Huang YX, Chen GB, Liu LM, Peng DX, Wang XF, Cai XZ, Li XX, Feng WQ, Ma Y (2019) miR-205-5p inhibits human endometriosis progression by targeting ANGPT2 in endometrial stromal cells. Stem Cell Res Ther 10:287

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  39. 39.

    Wu D, Lu P, Mi X, Miao J (2018) Exosomal miR-214 from endometrial stromal cells inhibits endometriosis fibrosis. Mol Hum Reprod 24:357–365

    CAS  PubMed  Google Scholar 

  40. 40.

    Liu Y, Chen J, Zhu X, Tang L, Luo X, Shi Y (2018) Role of miR-449b-3p in endometriosis via effects on endometrial stromal cell proliferation and angiogenesis. Mol Med Rep 18:3359–3365

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Hirakawa T, Nasu K, Abe W, Aoyagi Y, Okamoto M, Kai K, Takebayashi K, Narahara H (2016) miR-503, a microRNA epigenetically repressed in endometriosis, induces apoptosis and cell-cycle arrest and inhibits cell proliferation, angiogenesis, and contractility of human ovarian endometriotic stromal cells. Hum Reprod 31:2587–2597

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Yu H, Zhong Q, Xia Y, Li E, Wang S, Ren R (2019) MicroRNA-2861 targets STAT3 and MMP2 to regulate the proliferation and apoptosis of ectopic endometrial cells in endometriosis. Pharmazie 74:243–249

    CAS  PubMed  Google Scholar 

  43. 43.

    Hemida MG, Ye X, Thair S, Yang D (2010) Exploiting the therapeutic potential of microRNAs in viral diseases: expectations and limitations. Mol Diagn Ther 14:271–282

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Kota SK, Balasubramanian S (2010) Cancer therapy via modulation of micro RNA levels: a promising future. Drug Discov Today 15:733–740

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Esau CC (2008) Inhibition of microRNA with antisense oligonucleotides. Methods 44:55–60

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Gambari R, Fabbri E, BorgattiM LI, Finotti A, Brognara E, Bianchi N, Manicardi A, Marchelli R, Corradini R (2011) Targeting microRNAs involved in human diseases: a novel approach for modification of gene expression and drug development. Biochem Pharmacol 82:1416–1429

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Haefliger B, Prochazka L, Angelici B, Benenson Y (2016) Precision multidimensional assay for high-throughput microRNA drug discovery. Nat Commun 7:10709

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Cosar E, Mamillapalli R, Ersoy GS, Cho S, Seifer B, Taylor HS (2016) Serum microRNAs as diagnostic markers of endometriosis: a comprehensive array-based analysis. Fertil Steril 106:402–409

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Wang WT, Zhao YN, Han BW, Hong SJ, Chen YQ (2013) Circulating microRNAs identified in a genome-wide serum microRNA expression analysis as noninvasive biomarkers for endometriosis. J Clin Endocrinol Metab 98:281–289

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Maged AM, Deeb WS, El Amir A, Zaki SS, El Sawah H, Al Mohamady M, Metwally AA, Katta MA (2018) Diagnostic accuracy of serum miR-122 and miR-199a in women with endometriosis. Int J Gynaecol Obstet 141:14–19

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Misir S, Hepokur C, Oksasoglu B, Yildiz C, Yanik A, Aliyazicioglu Y (2021) Circulating serum miR-200c and miR-34a-5p as diagnostic biomarkers for endometriosis. J Gynecol Obstet Hum Reprod 50:102092

    PubMed  Article  Google Scholar 

  53. 53.

    Cho S, Mutlu L, Grechukhina O, Taylor HS (2015) Circulating microRNAs as potential biomarkers for endometriosis. Fertil Steril 103:1252-1260.e1

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Hu Z, Mamillapalli R, Taylor HS (2019) Increased circulating miR-370-3p regulates steroidogenic factor 1 in endometriosis. Am J Physiol Endocrinol Metab 316:E373–E382

    CAS  PubMed  Article  Google Scholar 

Download references

Funding

This work was supported in part by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (no. 20K09622 to K.N.).

Author information

Affiliations

Authors

Contributions

All authors conceived the study, participated in its design and coordination, and helped draft the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kaei Nasu.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nasu, K., Aoyagi, Y., Zhu, R. et al. Role of repressed microRNAs in endometriosis. Med Mol Morphol (2021). https://doi.org/10.1007/s00795-021-00303-8

Download citation

Keywords

  • Endometriosis
  • microRNA
  • Pathogenesis
  • Epigenetics