Skip to main content

Advertisement

Log in

Biochemical and morphological characterization of SEPT1 in mouse brain

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Septins are a highly conserved family of GTPases which are identified in diverse organisms ranging from yeast to humans. In mammals, nervous tissues abundantly contain septins and associations of septins with neurological disorders such as Alzheimer’s disease and Parkinson’s disease have been reported. However, roles of septins in the brain development have not been fully understood. In this study, we produced a specific antibody against mouse SEPT1 and carried out biochemical and morphological characterization of SEPT1. When the expression profile of SEPT1 during mouse brain development was analyzed by western blotting, we found that SEPT1 expression began to increase after birth and the increase continued until postnatal day 22. Subcellular fractionation of mouse brain and subsequent western blot analysis revealed the distribution of SEPT1 in synaptic fractions. Immunofluorescent analyses showed the localization of SEPT1 at synapses in primary cultured mouse hippocampal neurons. We also found the distribution of SEPT1 at synapses in mouse brain by immunohistochemistry. These results suggest that SEPT1 participates in various synaptic events such as the signaling, the neurotransmitter release, and the synapse formation/maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kinoshita M (2003) Assembly of mammalian septins. J Biochem (Tokyo) 134:491–496

    Article  CAS  Google Scholar 

  2. Beites CL, Xie H, Bowser R, Trimble WS (1999) The septin CDCrel-1 binds syntaxin and inhibits exocytosis. Nat Neurosci 2:434–439

    Article  CAS  Google Scholar 

  3. Blaser S, Jersch K, Hainmann I, Zieger W, Wunderle D, Busse A, Zieger B (2003) Isolation of new splice isoforms, characterization and expression analysis of the human septin SEPT8 (KIAA0202). Gene 312:313–320

    Article  CAS  Google Scholar 

  4. Ito H, Atsuzawa K, Morishita R, Usuda N, Sudo K, Iwamoto I, Mizutani K, Katoh-Semba R, Nozawa Y, Asano T, Nagata K (2009) Sept8 controls the binding of vesicle-associated membrane protein 2 to synaptophysin. J Neurochem 108:867–880

    Article  CAS  Google Scholar 

  5. Tada T, Simonetta A, Batterton M, Kinoshita M, Edbauer D, Sheng M (2007) Role of septin cytoskeleton in spine morphogenesis and dendrite development in neurons. Curr Biol 17:1752–1758

    Article  CAS  Google Scholar 

  6. Xie Y, Vessey JP, Konecna A, Dahm R, Macchi P, Kiebler MA (2007) The GTP-binding protein septin 7 is critical for dendrite branching and dendritic-spine morphology. Curr Biol 17:1746–1751

    Article  CAS  Google Scholar 

  7. Li X, Serwanski DR, Miralles CP, Nagata K, De Blas AL (2009) Septin 11 is present in GABAergic synapses and plays a functional role in the cytoarchitecture of neurons and GABAergic synaptic connectivity. J Biol Chem 284:17253–17265

    Article  CAS  Google Scholar 

  8. Kinoshita A, Kinoshita M, Akiyama H, Tomimoto H, Akiguchi I, Kumar S, Noda M, Kimura J (1998) Identification of septins in neurofibrillary tangles in Alzheimer's disease. Am J Pathol 153:1551–1560

    Article  CAS  Google Scholar 

  9. Ihara M, Tomimoto H, Kitayama H, Morioka Y, Akiguchi I, Shibasaki H, Noda M, Kinoshita M (2003) Association of the cytoskeletal GTP-binding protein Sept4/H5 with cytoplasmic inclusions found in Parkinson's disease and other synucleinopathies. J Biol Chem 278:24095–24102

    Article  CAS  Google Scholar 

  10. Hsu SC, Hazuka CD, Roth R, Foletti DL, Heuser J, Scheller RH (1998) Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments. Neuron 20:1111–1122

    Article  CAS  Google Scholar 

  11. Qi M, Yu W, Liu S, Jia H, Tang L, Shen M, Yan X, Saiyin H, Lang Q, Wan B, Zhao S, Yu L (2005) Septin1, a new interaction partner for human serine/threonine kinase aurora-B. Biochem Biophys Res Commun 336:994–1000

    Article  CAS  Google Scholar 

  12. Zhu J, Qi ST, Wang YP, Wang ZB, Ouyang YC, Hou Y, Schatten H, Sun QY (2011) Septin1 is required for spindle assembly and chromosome congression in mouse oocytes. Dev Dyn 240:2281–2289

    Article  CAS  Google Scholar 

  13. Song K, Gras C, Capin G, Gimber N, Lehmann M, Mohd S, Puchkov D, Rodiger M, Wilhelmi I, Daumke O, Schmoranzer J, Schurmann A, Krauss M (2019) A SEPT1-based scaffold is required for Golgi integrity and function. J Cell Sci 132(2):jcs225557

    Article  CAS  Google Scholar 

  14. Mizutani Y, Ito H, Iwamoto I, Morishita R, Kanoh H, Seishima M, Nagata K (2013) Possible role of a septin, SEPT1, in spreading in squamous cell carcinoma DJM-1 cells. Biol Chem 394:281–290

    Article  CAS  Google Scholar 

  15. Tsang CW, Estey MP, DiCiccio JE, Xie H, Patterson D, Trimble WS (2011) Characterization of presynaptic septin complexes in mammalian hippocampal neurons. Biol Chem 392:739–749

    Article  CAS  Google Scholar 

  16. Hanai N, Nagata K, Kawajiri A, Shiromizu T, Saitoh N, Hasegawa Y, Murakami S, Inagaki M (2004) Biochemical and cell biological characterization of a mammalian septin, Sept11. FEBS Lett 568:83–88

    Article  CAS  Google Scholar 

  17. Nagata K, Asano T, Nozawa Y, Inagaki M (2004) Biochemical and cell biological analyses of a mammalian septin complex, Sept7/9b/11. J Biol Chem 279:55895–55904

    Article  CAS  Google Scholar 

  18. Ito H, Morishita R, Mizuno M, Kawamura N, Tabata H, Nagata KI (2018) Biochemical and morphological characterization of a neurodevelopmental disorder-related mono-ADP-ribosylhydrolase, MACRO domain containing 2. Dev Neurosci 40:278–287

    Article  CAS  Google Scholar 

  19. Goslin K, Asmussen H, Banker G (1998) Rat hippocampal neurons in low-density culture. In: Banker G, Goslin K (eds) Culturing nerve cells, 2nd edn. MIT, Cambridge, pp 339–370

    Google Scholar 

  20. Kim MJ, Futai K, Jo J, Hayashi Y, Cho K, Sheng M (2007) Synaptic accumulation of PSD-95 and synaptic function regulated by phosphorylation of serine-295 of PSD-95. Neuron 56:488–502

    Article  CAS  Google Scholar 

  21. Ito H, Morishita R, Sudo K, Nishimura YV, Inaguma Y, Iwamoto I, Nagata K-I (2012) Biochemical and morphological characterization of MAGI-1 in neuronal tissue. J Neurosci Res 90:1776–1781

    Article  CAS  Google Scholar 

  22. Ito H, Morishita R, Shinoda T, Iwamoto I, Sudo K, Okamoto KI, Nagata K (2010) Dysbindin-1, WAVE2 and Abi-1 form a complex that regulates dendritic spine formation. Mol Psychiatry 15:976–986

    Article  CAS  Google Scholar 

  23. Ito H, Morishita R, Mizuno M, Tabata H, Nagata KI (2019) Rho family GTPases, Rac and Cdc42, control the localization of neonatal dentate granule cells during brain development. Hippocampus 29:569–578

    Article  CAS  Google Scholar 

  24. Beites CL, Campbell KA, Trimble WS (2005) The septin Sept5/CDCrel-1 competes with alpha-SNAP for binding to the SNARE complex. Biochem J 385:347–353

    Article  CAS  Google Scholar 

  25. Peng XR, Jia Z, Zhang Y, Ware J, Trimble WS (2002) The septin CDCrel-1 is dispensable for normal development and neurotransmitter release. Mol Cell Biol 22:378–387

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by JSPS KAKENHI grant (grant no. 21390318) and a grant-in-aid of Takeda Science foundation. We thank Ms. Noriko Kawamura and Takako Nagano for their technical assistances.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koh-ichi Nagata.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, H., Morishita, R., Noda, M. et al. Biochemical and morphological characterization of SEPT1 in mouse brain. Med Mol Morphol 53, 221–228 (2020). https://doi.org/10.1007/s00795-020-00248-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-020-00248-4

Keywords

Navigation