High sulfite oxidase expression could predict postoperative biochemical recurrence in patients with prostate cancer


Sulfite oxidase (SUOX) is a metalloenzyme that plays a role in ATP synthesis via oxidative phosphorylation in mitochondria and has been reported to also be involved in the invasion and differentiation capacities of tumor cells. Here, we performed a clinicopathological investigation of SUOX expression in prostate cancer and discussed the usefulness of SUOX expression as a predictor of biochemical recurrence following surgical treatment in prostate cancer. This study was conducted using Tissue Micro Array specimens obtained from 97 patients who underwent radical prostatectomy at our hospital between 2007 and 2011. SUOX staining was used to evaluate cytoplasmic SUOX expression. In the high-expression group, the early biochemical recurrence was significantly more frequent than in the low-expression group (p = 0.0008). In multivariate analysis, high SUOX expression was found to serve as an independent prognostic factor of biochemical recurrence (hazard ratio = 2.33, 95% confidence interval = 1.32–4.15, p = 0.0037). In addition, Ki-67-labeling indices were significantly higher in the high-expression group than in the low-expression group (p = 0.0058). Therefore, SUOX expression may be a powerful prognostic biomarker for decision-making in postoperative follow-up after total prostatectomy and with regard to the need for relief treatment.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30

    PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Nichol AM, Warde P, Bristow RG (2005) Optimal treatment of intermediate-risk prostate carcinoma with radiotherapy: clinical and translational issues. Cancer 104(5):891–905

    PubMed  Article  Google Scholar 

  3. 3.

    Lowrance WT, Eastham JA, Savage C, Maschino AC, Laudone VP, Dechet CB, Stephenson RA, Scardino PT, Sandhu JS (2012) Contemporary open and robotic radical prostatectomy practice patterns among urologists in the United States. J Urol 187(6):2087–2092

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Hull GW, Rabbani F, Abbas F, Wheeler TM, Kattan MW, Scardino PT (2002) Cancer control with radical prostatectomy alone in 1,000 consecutive patients. J Urol 167(2 Pt 1):528–534

    PubMed  Article  Google Scholar 

  5. 5.

    Schild SE, Wong WW, Novicki DE, Ferrigni RG, Swanson SK (1996) Detection of residual prostate cancer after radical prostatectomy with the Abbott IMx PSA assay. Urology 47(6):878–881

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD, Walsh PC (1999) Natural history of progression after PSA elevation following radical prostatectomy. JAMA 281(17):1591–1597

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Freedland SJ, Sutter ME, Dorey F, Aronson WJ (2003) Defining the ideal cutpoint for determining PSA recurrence after radical prostatectomy. Prostate-specific antigen. Urology 61(2):365–369

    PubMed  Article  Google Scholar 

  8. 8.

    D’Amico AV, Whittington R, Malkowicz SB, Schultz D, Blank K, Broderick GA, Tomaszewski JE, Renshaw AA, Kaplan I, Beard CJ, Wein A (1998) Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 280(11):969–974

    PubMed  Article  Google Scholar 

  9. 9.

    D’Amico AV, Chen MH, Roehl KA, Catalona WJ (2004) Preoperative PSA velocity and the risk of death from prostate cancer after radical prostatectomy. New Engl J Med 351(2):125–135

    PubMed  Article  Google Scholar 

  10. 10.

    Horiguchi A, Nakashima J, Horiguchi Y, Nakagawa K, Oya M, Ohigashi T, Marumo K, Murai M (2003) Prediction of extraprostatic cancer by prostate specific antigen density, endorectal MRI, and biopsy Gleason score in clinically localized prostate cancer. Prostate 56(1):23–29

    PubMed  Article  Google Scholar 

  11. 11.

    Ohori M, Kattan MW, Koh H, Maru N, Slawin KM, Shariat S, Muramoto M, Reuter VE, Wheeler TM, Scardino PT (2004) Predicting the presence and side of extracapsular extension: a nomogram for staging prostate cancer. J Urol 171(5):1844–1849; (discussion 49)

    PubMed  Article  Google Scholar 

  12. 12.

    Stephenson AJ, Shariat SF, Zelefsky MJ, Kattan MW, Butler EB, Teh BS, Klein EA, Kupelian PA, Roehrborn CG, Pistenmaa DA, Pacholke HD, Liauw SL, Katz MS, Leibel SA, Scardino PT, Slawin KM (2004) Salvage radiotherapy for recurrent prostate cancer after radical prostatectomy. JAMA 291(11):1325–1332

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Swindle P, Eastham JA, Ohori M, Kattan MW, Wheeler T, Maru N, Slawin K, Scardino PT (2008) Do margins matter? The prognostic significance of positive surgical margins in radical prostatectomy specimens. J Urol 179(5 Suppl):S47–S51

    PubMed  Google Scholar 

  14. 14.

    Budaus L, Isbarn H, Eichelberg C, Lughezzani G, Sun M, Perrotte P, Chun FK, Salomon G, Steuber T, Kollermann J, Sauter G, Ahyai SA, Zacharias M, Fisch M, Schlomm T, Haese A, Heinzer H, Huland H, Montorsi F, Graefen M, Karakiewicz PI (2010) Biochemical recurrence after radical prostatectomy: multiplicative interaction between surgical margin status and pathological stage. J Urol 184(4):1341–1346

    PubMed  Article  Google Scholar 

  15. 15.

    Yossepowitch O, Briganti A, Eastham JA, Epstein J, Graefen M, Montironi R, Touijer K (2014) Positive surgical margins after radical prostatectomy: a systematic review and contemporary update. Eur Urol 65(2):303–313

    PubMed  Article  Google Scholar 

  16. 16.

    Negishi T, Kuroiwa K, Hori Y, Tomoda T, Uchino H, Tokuda N, Furubayashi N, Nagase K, Iwai H, Nakamura M (2017) Predictive factors of late biochemical recurrence after radical prostatectomy. Jpn J Clin Oncol 47(3):233–238

    PubMed  Article  Google Scholar 

  17. 17.

    Feng C, Kedia RV, Hazzard JT, Hurley JK, Tollin G, Enemark JH (2002) Effect of solution viscosity on intramolecular electron transfer in sulfite oxidase. Biochemistry 41(18):5816–5821

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Kisker C, Schindelin H, Pacheco A, Wehbi WA, Garrett RM, Rajagopalan KV, Enemark JH, Rees DC (1997) Molecular basis of sulfite oxidase deficiency from the structure of sulfite oxidase. Cell 91(7):973–983

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    D’Errico G, Di Salle A, La Cara F, Rossi M, Cannio R (2006) Identification and characterization of a novel bacterial sulfite oxidase with no heme binding domain from Deinococcus radiodurans. J Bacteriol 188(2):694–701

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. 20.

    Tan WH, Eichler FS, Hoda S, Lee MS, Baris H, Hanley CA, Grant PE, Krishnamoorthy KS, Shih VE (2005) Isolated sulfite oxidase deficiency: a case report with a novel mutation and review of the literature. Pediatrics 116(3):757–766

    PubMed  Article  Google Scholar 

  21. 21.

    Cohen HJ, Betcher-Lange S, Kessler DL, Rajagopalan KV (1972) Hepatic sulfite oxidase. Congruency in mitochondria of prosthetic groups and activity. J Biol Chem 247(23):7759–7766

    CAS  PubMed  Google Scholar 

  22. 22.

    Jin GZ, Yu WL, Dong H, Zhou WP, Gu YJ, Yu H, Yu H, Lu XY, Xian ZH, Liu YK, Cong WM, Wu MC (2013) SUOX is a promising diagnostic and prognostic biomarker for hepatocellular carcinoma. J Hepatol 59(3):510–517

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Nakamura K, Akiba J, Ogasawara S, Naito Y, Nakayama M, Abe Y, Kusukawa J, Yano H (2018) SUOX is negatively associated with multistep carcinogenesis and proliferation in oral squamous cell carcinoma. Med Mol Morphol 51(2):102–110

    PubMed  Article  Google Scholar 

  24. 24.

    H PA (2016) WHO clasification of tumors of the prostate. 138–62

  25. 25.

    Helps SC, Thornton E, Kleinig TJ, Manavis J, Vink R (2012) Automatic nonsubjective estimation of antigen content visualized by immunohistochemistry using color deconvolution. Appl Immunohistochem Mol Morphol 20(1):82–90

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Ruifrok AC, Johnston DA (2001) Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol 23(4):291–299

    CAS  PubMed  Google Scholar 

  27. 27.

    Aoun F, Albisinni S, Henriet B, Tombal B, Van Velthoven R, Roumeguere T (2017) Predictive factors associated with biochemical recurrence following radical prostatectomy for pathological T2 prostate cancer with negative surgical margins. Scand J Urol 51(1):20–26

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Lee S, Jeong CW, Jeong SJ, Hong SK, Choi W, Byun SS, Lee SE (2013) The prognostic value of pathologic prostate-specific antigen mass ratio in patients with localized prostate cancer with negative surgical resection margins. Urology 82(4):865–869

    PubMed  Article  Google Scholar 

  29. 29.

    Cao D, Kibel AS, Gao F, Tao Y, Humphrey PA (2010) The Gleason score of tumor at the margin in radical prostatectomy is predictive of biochemical recurrence. Am J Surg Pathol 34(7):994–1001

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Muniyan S, Chen SJ, Lin FF, Wang Z, Mehta PP, Batra SK, Lin MF (2015) ErbB-2 signaling plays a critical role in regulating androgen-sensitive and castration-resistant androgen receptor-positive prostate cancer cells. Cell Signal 27(11):2261–2271

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Tobiume M, Yamada Y, Nakamura K, Aoki S, Zennami K, Kato Y, Nishikawa G, Yokoi T, Honda N (2011) Significant prognostic factor of immunohistochemical HER-2 expression using initial prostate biopsy specimens with M1b prostate cancer. Prostate 71(4):385–393

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Igawa T (2017) Role of protein phosphatases in genitourinary cancers. Int J Urol 24(1):16–24

    PubMed  Article  Google Scholar 

  33. 33.

    Xiao H, Wang J, Yan W, Cui Y, Chen Z, Gao X, Wen X, Chen J (2018) GLUT1 regulates cell glycolysis and proliferation in prostate cancer. Prostate 78(2):86–94

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Reinicke K, Sotomayor P, Cisterna P, Delgado C, Nualart F, Godoy A (2012) Cellular distribution of Glut-1 and Glut-5 in benign and malignant human prostate tissue. J Cell Biochem 113(2):553–562

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Vaupel P (2018) Hypoxia in prostate cancer. J Cancer Metast Treat 4(5)

  36. 36.

    Fukushima H, Yasumoto M, Ogasawara S, Akiba J, Kitasato Y, Nakayama M, Naito Y, Ishida Y, Okabe Y, Yasunaga M, Horiuchi H, Sakamoto E, Itadani H, Mizuarai S, Oie S, Yano H (2016) ARHGEF15 overexpression worsens the prognosis in patients with pancreatic ductal adenocarcinoma through enhancing the motility and proliferative activity of the cancer cells. Mol Cancer 15(1):32

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. 37.

    Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41(3):211–218

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Locasale JW, Cantley LC (2011) Metabolic flux and the regulation of mammalian cell growth. Cell Metab 14(4):443–451

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, Kelley MJ, Gallez B, Wahl ML, Feron O, Dewhirst MW (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Investig 118(12):3930–3942

    CAS  PubMed  Google Scholar 

  41. 41.

    Epstein JI, Zelefsky MJ, Sjoberg DD, Nelson JB, Egevad L, Magi-Galluzzi C, Vickers AJ, Parwani AV, Reuter VE, Fine SW, Eastham JA, Wiklund P, Han M, Reddy CA, Ciezki JP, Nyberg T, Klein EA (2016) A Contemporary prostate cancer grading system: a validated alternative to the gleason score. Eur Urol 69(3):428–435

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Ham WS, Chalfin HJ, Feng Z, Trock BJ, Epstein JI, Cheung C, Humphreys E, Partin AW, Han M (2017) New prostate cancer grading system predicts long-term survival following surgery for gleason score 8–10 prostate cancer. Eur Urol 71(6):907–912

    PubMed  Article  Google Scholar 

  43. 43.

    Hensley CT, Faubert B, Yuan Q, Lev-Cohain N, Jin E, Kim J, Jiang L, Ko B, Skelton R, Loudat L, Wodzak M, Klimko C, McMillan E, Butt Y, Ni M, Oliver D, Torrealba J, Malloy CR, Kernstine K, Lenkinski RE, DeBerardinis RJ (2016) Metabolic heterogeneity in human lung tumors. Cell 164(4):681–694

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Kerr EM, Gaude E, Turrell FK, Frezza C, Martins CP (2016) Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities. Nature 531(7592):110–113

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Yossepowitch O, Bjartell A, Eastham JA, Graefen M, Guillonneau BD, Karakiewicz PI, Montironi R, Montorsi F (2009) Positive surgical margins in radical prostatectomy: outlining the problem and its long-term consequences. Eur Urol 55(1):87–99

    PubMed  Article  Google Scholar 

  46. 46.

    Lattouf JB, Saad F (2003) Digital rectal exam following prostatectomy: is it still necessary with the use of PSA? Eur Urol 43(4):333–336

    PubMed  Article  Google Scholar 

  47. 47.

    Pound CR, Christens-Barry OW, Gurganus RT, Partin AW, Walsh PC (1999) Digital rectal examination and imaging studies are unnecessary in men with undetectable prostate specific antigen following radical prostatectomy. J Urol 162(4):1337–1340

    CAS  PubMed  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yoshiki Naito.

Ethics declarations

Conflict of interest

All authors have declared that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kurose, H., Naito, Y., Akiba, J. et al. High sulfite oxidase expression could predict postoperative biochemical recurrence in patients with prostate cancer. Med Mol Morphol 52, 164–172 (2019). https://doi.org/10.1007/s00795-018-00214-1

Download citation


  • Prostate cancer
  • SUOX
  • Biomarker
  • Biochemical recurrence
  • Oxidative phosphorylation