Skip to main content

Advertisement

Log in

Inclusion bodies of aggregated hemosiderins in liver macrophages

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Hemosiderin formation is a structural indication of iron overload. We investigated further adaptations of the liver to excess iron. Five patients with livers showing iron-rich inclusions larger than 2 µm were selected from our database. The clinical features of patients and structures of the inclusions were compared with those of 2 controls with mild iron overload. All patients had severe iron overload with more than 5000 ng/mL of serum ferritin. Etiologies were variable, from hemochromatosis to iatrogenic iron overload. Their histological stages were either portal fibrosis or cirrhosis. Inclusion bodies were ultra-structurally visualized as aggregated hemosiderins in the periportal macrophages. X-ray analysis always identified, in addition to a large amount of iron complexes including oxygen and phosphorus, a small amount of copper and sulfur in the mosaic matrixes of inclusions. There were no inclusions in the control livers. Inclusion bodies, when the liver is loaded with excess iron, may appear in the macrophages as isolated organella of aggregated hemosiderins. Trace amounts of copper-sulfur complexes were always identified in the mosaic matrices of the inclusions, suggesting cuproprotein induction against excess iron. In conclusion, inclusion formation in macrophages may be an adaptation of the liver loaded with excess iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pietrangelo A (2010) Hereditary hemochromatosis: pathogenesis, diagnosis, and treatment. Gastroenterology 139:393–408

    Article  PubMed  Google Scholar 

  2. Winter WE, Bazydlo LA, Harris NS (2014) The molecular biology of human iron metabolism. Lab Med 45:92–102

    Article  PubMed  Google Scholar 

  3. Granick S, Michaelis L (1942) Ferritin and apoferritin. Science 95:439–440

    Article  CAS  PubMed  Google Scholar 

  4. Lillie RD (1939) Experiments on the solubility of hemosiderin in acids and other reagents during and after various fixations. Am J Pathol 15:225–239

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Deugnier YM, Turlin B, Powell LW, Summers KM, Moirand R, Fletcher L, Loréal O, Brissot P, Halliday JW (1993) Differentiation between heterozygotes and homozygotes in genetic hemochromatosis by means of a histological hepatic iron index: a study of 192 cases. Hepatology 17:30–34

    Article  CAS  PubMed  Google Scholar 

  6. Ganz T (2003) Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 102:783–788

    Article  CAS  PubMed  Google Scholar 

  7. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–2093

    Article  CAS  PubMed  Google Scholar 

  8. Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S, Andrews NC (2005) The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab 1:191–200

    Article  CAS  PubMed  Google Scholar 

  9. Hattori A, Miyajima A, Tomosugi N, Tatsumi Y, Hayashi H, Wakusawa S (2012) Clinicopathological study of Japanese patients with genetic iron overload syndromes. Pathol Int 62:612–618

    Article  CAS  PubMed  Google Scholar 

  10. Hayashi H, Wakusawa S, Yano M, Okada T (2007) Genetic background of Japanese patients with adult-onset storage diseases in the liver. Hepatol Res 37:777–783

    Article  CAS  PubMed  Google Scholar 

  11. Hawkins-Salsbury JA, Reddy AS, Sands MS (2011) Combined therapies for lysosomal storage disease: is the whole greater than the sum of its parts? Hum Mol Genet 20:R54–R60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reuser AJ, Van Den Hout H, Bijvoet AG, Kroos MA, Verbeet MP, Van Der Ploeg AT (2002) Enzyme therapy for Pompe disease: from science to industrial enterprise. Eur J Pediatr 161(Suppl 1):S106–S111

    Article  CAS  PubMed  Google Scholar 

  13. Ono Y, Ishigami M, Hayashi K, Wakusawa S, Hayashi H, Kumagai K, Morotomi N, Yamashita T, Kawanaka M, Watanabe M, Ozawa H, Tai M, Miyajima H, Yoshioka K, Hirooka Y, Goto H (2015) Copper accumulates in livers of patients with iron overload syndromes. J Clin Transl Hepatol 3:85–92

    Article  PubMed  PubMed Central  Google Scholar 

  14. Collins JF, Prohaska JR, Knutson MD (2010) Metabolic crossroads of iron and copper. Nutr Rev 68:133–147

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hanaichi T, Kidokoro R, Hayashi H, Sakamoto N (1984) Electron probe X-ray analysis on human hepatocellular lysosomes with copper deposits: copper binding to a thiol-protein in lysosomes. Lab Invest 51:592–597

    CAS  PubMed  Google Scholar 

  16. Koyama C, Hayashi H, Wakusawa S, Ueno T, Yano M, Katano Y, Goto H, Kidokoro R (2005) Three patients with middle-age-onset hemochromatosis caused by novel mutations in the hemojuvelin gene. J Hepatol 43:740–742

    Article  CAS  PubMed  Google Scholar 

  17. Watanabe M, Asai C, Ishikawa K, Kiyota A, Terada T, Kono S, Miyajima H, Okumura A (2010) Central diabetes insipidus and hypothalamic hypothyroidism associated with aceruloplasminemia. Intern Med 49:1581–1585

  18. Tstuchida K, Taneda S, Misawa K, Akimoto Y, Bando H, Hagiwara S, Komori K, Hattori A, Tatsumi Y, Hayashi H, Nakayama H, Mada N (2010) Novel compound heterozygote mutations in a Japanese patient with hemochromatosis who has severe diabetes, pituitary hypogonadism and liver fibrosis. Diabetes 53:247–252 (in Japanese)

    Google Scholar 

  19. Yamashita T, Morotomi N, Sohda T, Hayashi H, Yoshida N, Ochi K, Ohkura I, Karita M, Fujiwara H, Yamashita H, Hattori A, Tatsumi Y (2014) A male patient with ferroportin disease B and a female patient with iron overload similar to ferroportin disease B. Clin J Gastroenterol 7:260–264

    Article  PubMed  Google Scholar 

  20. Kaneko Y, Miyajima H, Piperno A, Tomosugi N, Hayashi H, Morotomi N, Tsuchida K, Ikeda T, Ishikawa A, Ota Y, Wakusawa S, Yoshioka K, Kono S, Pelucchi S, Hattori A, Tatsumi Y, Okada T, Yamagishi M (2010) Measurement of serum hepcidin-25 levels as a potential test for diagnosing hemochromatosis and related disorders. J Gastroenterol 45:1163–1171

    Article  CAS  PubMed  Google Scholar 

  21. Kurz T, Eaton JW, Brunk UT (2011) The role of lysosomes in iron metabolism and recycling. Int J Biochem Cell Biol 43:1686–1697

    Article  CAS  PubMed  Google Scholar 

  22. Blaby-Haas CE, Merchant SS (2014) Lysosome-related organelles as mediators of metal homeostasis. J Biol Chem 289:28129–28136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vashchenko G, MacGillivray RT (2013) Multi-copper oxidases and human iron metabolism. Nutrients 27:2289–2313

    Article  Google Scholar 

  24. Zhao M, Matter K, Laissue JA, Zimmermann A (1995) Copper/zinc and manganese superoxide dismutase immunoreactivity in hepatic iron overload diseases. Histol Histopathol 10:925–935

    CAS  PubMed  Google Scholar 

  25. Schröder JM (2005) Ferritinopathy: diagnosis by muscle or nerve biopsy, with a note on other nuclear inclusion body diseases. Acta Neuropathol 109:109–114

    Article  PubMed  Google Scholar 

  26. Yoshida K, Hayashi H, Wakusawa S, Shigemasa R, Koide R, Ishikawa T, Tatsumi Y, Kato K, Ohara S (2017) Ikeda SI (2016) Coexistence of copper in the iron-rich particles of aceruloplasminemia brain. Biol Trace Elem Res 175:79–86

    Article  CAS  PubMed  Google Scholar 

  27. Vidal R, Ghetti B, Takao M, Brefel-Courbon C, Uro-Coste E, Glazier BS, Siani V, Benson MD, Calvas P, Miravalle L, Rascol O, Delisle MB (2004) Intracellular ferritin accumulation in neural and extraneural tissue characterizes a neurodegenerative disease associated with a mutation in the ferritin light polypeptide gene. J Neuropathol Experiment Neurol 63:363–380

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisao Hayashi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, H., Tatsumi, Y., Wakusawa, S. et al. Inclusion bodies of aggregated hemosiderins in liver macrophages. Med Mol Morphol 50, 205–210 (2017). https://doi.org/10.1007/s00795-017-0163-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-017-0163-x

Keywords

Navigation