Skip to main content

Advertisement

Log in

Mesenchymal stem cell in vitro labeling by hybrid fluorescent magnetic polymeric particles for application in cell tracking

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) are a type of adult stem cell that contains multi-differentiation and proliferative properties and that shows high treatment implications for many clinical problems. The outcome of stem cell transplantation is still limited due to many factors, especially their survival and their interaction with the microenvironment after transplantation. Molecular imaging is a challenging technique that has been used to overcome this limitation and is based on the concept of labeling cells with tractable, visible, and non-toxic materials to track the cells after transplantation. In this study, magnetic polymeric nanoparticles (MPNPs) were used to directly label Wharton’s jelly-derived MSCs (WJ-MSCs). After labeling, the growth rate and the viability of the MSCs as well as the time of exposure were determined. The 3D images of WJ-MSCs labeled with MPNPs for 24 h were created using confocal microscopy. The results showed that, after incubation with fluorescent MPNPs for over 8 h, the growth rate and cell viability of the WJ-MSCs was similar to those of the control. Three-dimensional imaging revealed that the fluorescent MPNPs could infiltrate into the cells and spread into the cytoplasm, which suggests that the synthesized fluorescent MPNPs could possibly label MSCs for cell tracking study and be further developed for in vivo applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tarnowski M, Sieron AL (2006) Adult stem cells and their ability to differentiate. Med Sci Monit 12:154–163

    Google Scholar 

  2. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  3. Xu W, Zhang X, Qian H, Zhu W, Sun X, Hu J, Zhou H, Chen Y (2004) Mesenchymal stem cells from adult human bone marrow differentiates into a cardiomyocyte phenotype in vitro. Exp Biol Med (Maywood) 229:623–631

    CAS  Google Scholar 

  4. Nartprayut K, U-Pratya Y, Kheolamai P, Manochantr S, Chayosumrit M, Issaragrisil S, Supokawej A (2013) Cardiomyocyte differentiation of perinatally-derived mesenchymal stem cells. Mol Med Rep 7:1465–1469

    CAS  PubMed  Google Scholar 

  5. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  6. Gebler A, Zabel O, Seliger B (2012) The immunomodulatory capacity of mesenchymal stem cells. Trends Mol Med 18:128–134

    Article  CAS  PubMed  Google Scholar 

  7. Herrero C, Pérez-Simón JA (2010) Immunomodulatory effect of mesenchymal stem cells. Braz J Med Biol Res 43:425–430

    Article  CAS  PubMed  Google Scholar 

  8. Rim KT, Song SW, Kim HY (2013) Oxidative DNA damage from nanoparticle exposure and its application to workers’ health: a literature review. Saf Health Work 4:177–186

    Article  PubMed Central  PubMed  Google Scholar 

  9. Funes JM, Henderson S, Kaufman R, Flanagan JM, Robson M, Pedley B, Moncada S, Boshoff C (2014) Oncogenic transformation of mesenchymal stem cells decreases Nrf2 expression favoring in vivo tumor growth and poorer survival. Mol Cancer 13:20

    Article  PubMed Central  PubMed  Google Scholar 

  10. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98

    Article  PubMed  Google Scholar 

  11. Chin BB, Nakamoto Y, Bulte JWM, Pittenger MF, Wahl R, Kraitchman DL (2003) 111In oxine labeled mesenchymal stem cell SPECT after intravenous administration in myocardial infarction. Nucl Med Commun 24:1149–1154

    Article  CAS  PubMed  Google Scholar 

  12. Zhou L, Li Z, Liu Z, Yin M, Ren J, Qu X (2014) One-step nucleotide-programmed growth of porous upconversion nanoparticles: application to cell labeling and drug delivery. Nanoscale 6:1445–1452

    Article  CAS  PubMed  Google Scholar 

  13. Delgado D, del Pozo-Rodríguez A, Angeles Solinís M, Bartkowiak A, Rodríguez-Gascón A (2013) New gene delivery system based on oligochitosan and solid lipid nanoparticles: “in vitro” and “in vivo” evaluation. Eur J Pharm Sci 50:484–491

    Article  CAS  PubMed  Google Scholar 

  14. Leung KC, Wong CH, Zhu XM, Lee SF, Sham KW, Lai JM, Chak CP, Wang YX, Cheng CH (2013) Ternary hybrid nanocomposites for gene delivery and magnetic resonance imaging of hepatocellular carcinoma cells. Quant Imaging Med Surg 3:302–307

    PubMed Central  PubMed  Google Scholar 

  15. Markowska K, Grudniak AM, Wolska KI (2013) Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim Pol 60:523–530

    PubMed  Google Scholar 

  16. Hsiao JK, Tai MF, Chu HH, Chen ST, Li H, Lai DM, Hsieh ST, Wang JL, Liu HM (2007) Magnetic nanoparticle labeling of mesenchymal stem cells without transfection agent: cellular behavior and capability of detection with clinical 1.5 T magnetic resonance at the single cell level. Magn Reson Med 58:717–724

    Article  CAS  PubMed  Google Scholar 

  17. Saptarshi SR, Duschl A, Lopata AL (2013) Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnology 11:26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Kaewsaneha C, Opaprakasit P, Polpanich D, Smanmoo S, Tangboriboonrat P (2012) Immobilization of fluorescein isothiocyanate on magnetic polymeric nanoparticle using chitosan as spacer. J Colloid Interface Sci 377:145–152

    Article  CAS  PubMed  Google Scholar 

  19. Keerthi N, Chimutengwende-Gordon M, Sanghani A, Khan W (2013) The potential of stem cell therapy for osteoarthritis and rheumatoid arthritis. Curr Stem Cell Res Ther 8:444–450

    Article  CAS  PubMed  Google Scholar 

  20. Arufe MC, De la Fuente A, Fuentes I, Toro FJD, Blanco FJ (2011) Umbilical cord as a mesenchymal stem cell source for treating joint pathologies. World J Orthop 2:43–50

    Article  PubMed Central  PubMed  Google Scholar 

  21. Bernstein HS, Srivastava D (2012) Stem cell therapy for cardiac disease. Pediatr Res 71:491–499

    Article  CAS  PubMed  Google Scholar 

  22. Lee SR, Lee SH, Moon JY, Park JY, Lee D, Lim SJ, Jeong KH, Park JK, Lee TW, Ihm CG (2010) Repeated administration of bone marrow-derived mesenchymal stem cells improved the protective effects on a remnant kidney model. Ren Fail 32:840–848

    Article  CAS  PubMed  Google Scholar 

  23. Martin FT, Dwyer RM, Kelly J, Khan S, Murphy JM, Curran C, Miller N, Hennessy E, Dockery P, Barry FP, O’Brien T, Kerin MJ (2010) Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res Treat 124:317–326

    Article  CAS  PubMed  Google Scholar 

  24. Mielcarek M, Storb R, Georges GE, Golubev L, Nikitine A, Hwang B, Nash RA, Torok-Storb B (2011) Mesenchymal stromal cells fail to prevent acute graft-versus-host disease and graft rejection after dog leukocyte antigen-haploidentical bone marrow transplantation. Biol Blood Marrow Transplant 17:214–225

    Article  PubMed Central  PubMed  Google Scholar 

  25. Spillmann CM, Naciri J, Algar WR, Medintz IL, Delehanty JB (2014) Multifunctional liquid crystal nanoparticles for intracellular fluorescent imaging and drug delivery. ACS Nano 8:6986–6997

    Article  CAS  PubMed  Google Scholar 

  26. Su H, Mou Y, An Y, Han W, Huang X, Xia G, Ni Y, Zhang Y, Ma J, Hu Q (2013) The migration of synthetic magnetic nanoparticle labeled dendritic cells into lymph nodes with optical imaging. Int J Nanomedicine 8:3737–3744

    PubMed Central  PubMed  Google Scholar 

  27. Lisy MR, Hartung A, Lang C, Schüler D, Richter W, Reichenbach JR, Kaiser WA, Hilger I (2007) Fluorescent bacterial magnetic nanoparticles as bimodal contrast agents. Invest Radiol 42:235–241

    Article  CAS  PubMed  Google Scholar 

  28. Mailänder V, Landfester K (2009) Interaction of nanoparticles with cells. Biomacromolecules 10:2379–2400

    Article  PubMed  Google Scholar 

  29. Gao J, Xu B (2009) Applications of nanomaterials inside cells. Nano Today. 4:37–51

    Article  CAS  Google Scholar 

  30. Sun B, Sun MJ, Gu Z, Shen QD, Jiang SJ, Xu Y, Wang Y (2010) Conjugated polymer fluorescence probe for intracellular imaging of magnetic nanoparticles. Macromolecules 43:10348–10354

    Article  CAS  Google Scholar 

  31. Greulich C, Diendorf J, Simon T, Eggeler G, Epple M, Köller M (2011) Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomater 7:347–354

    Article  CAS  PubMed  Google Scholar 

  32. Gromnicova R, Davies HA, Sreekanthreddy P, Romero IA, Lund T, Roitt IM, Phillips JB, Male DK (2013) Glucose-coated gold nanoparticles transfer across human brain endothelium and enter astrocytes in vitro. PLoS One 8:e81043

    Article  PubMed Central  PubMed  Google Scholar 

  33. Pala A, Liberatore M, D’Elia P, Nepi F, Megna V, Mastantuono M, Al-Nahhas A, Rubello D, Barteri M (2012) Labeling of granulocytes by phagocytic engulfment with 64Cu-labelled chitosan-coated magnetic nanoparticles. Mol Imaging Biol 14:593–598

    Article  PubMed  Google Scholar 

  34. Hsiao JK, Tai MF, Lee YC, Yang CY, Wang HY, Liu HM (2006) Labelling of cultured macrophages with novel magnetic nanoparticles. J Magn Magn Mater 304:e4–e6

    Article  CAS  Google Scholar 

  35. Dhas TS, Kumar VG, Karthick V, Govindaraju K, ShankaraNarayana T (2014) Biosynthesis of gold nanoparticles using Sargassum swartzii and its cytotoxicity effect on HeLa cells. Spectrochim Acta A Mol Biomol Spectrosc 133C:102–106

    Article  Google Scholar 

  36. Kaewsaneha C, Jangpatarapongsa K, Tangchaikeeree T, Polpanich D, Tangboriboonrat P (2014) Fluorescent chitosan functionalized magnetic polymeric nanoparticles: cytotoxicity and in vitro evaluation of cellular uptake. J Biomater Appl 29(5):761–768

    Article  CAS  PubMed  Google Scholar 

  37. Skopalik J, Polakova K, Havrdova M, Justan I, Magro M, Milde D, Knopfova L, Smarda J, Polakova H, Gabrielova E, Vianello F, Michalek J, Zboril R (2014) Mesenchymal stromal cell labeling by new uncoated superparamagnetic maghemite nanoparticles in comparison with commercial Resovist—an initial in vitro study. Int J Nanomedicine 9(1):5355–5372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Tian F, Chen G, Yi P, Zhang J, Li A, Zhang J, Zheng L, Deng Z, Shi Q, Peng R, Wang Q (2014) Fates of Fe3O4 and Fe3O4@SiO2 nanoparticles in human mesenchymal stem cells assessed by synchrotron radiation-based techniques. Biomaterials 35:6412–6421

    Article  CAS  PubMed  Google Scholar 

  39. Yuqing G, Yu Z, Shiying H, Fang N, Gaojun T, Ning Gu (2009) Fluorescence modified chitosan-coated magnetic nanoparticles for high-efficient cellular imaging. Nanoscale Res Lett 4:287–295

    Article  Google Scholar 

  40. Yu KN, Yoon TJ, Minai-Tehrani A, Kim JE, Park SJ, Jeong MS, Ha SW, Lee JK, Kim JS, Cho MH (2013) Zinc oxide nanoparticle induced autophagic cell death and mitochondrial damage via reactive oxygen species generation. Toxicol In Vitro 27:1187–1195

    Article  CAS  PubMed  Google Scholar 

  41. Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 40:4346–4352

    Article  CAS  PubMed  Google Scholar 

  42. Khaing Oo MK, Yang Y, Hu Y, Gomez M, Du H, Wang H (2012) Gold nanoparticle-enhanced and size-dependent generation of reactive oxygen species from protoporphyrin IX. ACS Nano 6:1939–1947

    Article  CAS  PubMed  Google Scholar 

  43. Minai L, Yeheskely-Hayon D, Yelin D (2013) High levels of reactive oxygen species in gold nanoparticle-targeted cancer cells following femtosecond pulse irradiation. Sci Rep 3:2146

    Article  PubMed Central  PubMed  Google Scholar 

  44. He D, Dorantes-Aranda JJ, Waite TD (2012) Silver nanoparticle-algae interactions: oxidative dissolution, reactive oxygen species generation and synergistic toxic effects. Environ Sci Technol 46:8731–8738

    Article  CAS  PubMed  Google Scholar 

  45. Gong C, Tao G, Yang L, Liu J, He H, Zhuang Z (2012) The role of reactive oxygen species in silicon dioxide nanoparticle-induced cytotoxicity and DNA damage in HaCaT cells. Mol Biol Rep 39:4915–4925

    Article  CAS  PubMed  Google Scholar 

  46. Bhirde A, Xie J, Swierczewska Mand Chen X (2011) Nanoparticles for cell labeling. Nanoscale 3:142–153

    Article  CAS  PubMed  Google Scholar 

  47. Jing R, Jiajia J, Hua S, Qirong Q, Kan W, Can W, Daxiang C (2012) Fluorescent magnetic nanoparticle-labeled mesenchymal stem cells for targeted imaging and hyperthermia therapy of in vivo gastric cancer. Nanoscale Res Lett 7:309

    Article  Google Scholar 

  48. Zou Y, Liu P, Liu CH, Zhi XT (2015) Doxorubicin-loaded mesoporous magnetic nanoparticles to induce apoptosis in breast cancer cells. Biomed Pharmacother 69:355–360

    Article  CAS  PubMed  Google Scholar 

  49. Peixoto RC, Miranda-Vilela AL, Filho JS, Carneiro ML, Oliveira RG, da Silva MO, de Souza AR, Báo SN (2014) Antitumor effect of free rhodium (II) citrate and rhodium (II) citrate-loaded maghemite nanoparticles on mice bearing breast cancer: a systemic toxicity assay. Tumour Biol. doi:10.1007/s13277-014-2966-x

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge a research grant (RTA5480007) from The Thailand Research Fund (TRF)/Commission on Higher Education to P.T., a scholarship from the National Research Council of Thailand to S.H. and K. J. and the Office of the Higher Education Commission and Mahidol University under the National Research Universities Initiative to A.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kulachart Jangpatarapongsa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Supokawej, A., Nimsanor, N., Sanvoranart, T. et al. Mesenchymal stem cell in vitro labeling by hybrid fluorescent magnetic polymeric particles for application in cell tracking. Med Mol Morphol 48, 204–213 (2015). https://doi.org/10.1007/s00795-015-0102-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-015-0102-7

Keywords

Navigation