Skip to main content

Advertisement

Log in

Expression of interleukin-34 and colony stimulating factor-1 in the stimulated periodontal ligament cells with tumor necrosis factor-α

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Tumor necrosis factor-α (TNF-α) directly and indirectly plays a crucial role in osteoclastogenesis. However, the indirect effects of TNF-α on colony-stimulating factor-1 receptor (CSF-1R)-mediated osteoclastogenesis achieved via periodontal ligament (PDL) cells are not fully understood. We herein examined the potency of osteoclast differentiation and maturation induced by fivefold supernatants in the stimulated human PDL cells with a physiologically high concentration (10 ng/mL) of recombinant TNF-α to human peripheral blood monocytes/macrophages in the simultaneous presence of the receptor activator of nuclear factor kappa-B ligand. The number of tartrate-resistant acid phosphatase-positive cells with multiple nuclei, but not those with a single nucleus, was decreased by approximately 50 % by neutralization with rabbit IgG against either interleukin-34 (IL-34) or CSF-1. Small and large amounts of IL34 and CSF1 transcripts were measured in the stimulated PDL cells using real-time polymerase chain reaction. The corresponding amounts of proteins to IL34 and CSF1 transcripts were observed in the stimulated PDL cells on immunohistochemical staining or Western blotting. Moreover, 0.13 ng/mL of IL-34 and 5.0 ng/mL of CSF-1 were measured in the supernatants of the stimulated PDL cells using an enzyme-linked immunosorbent assay. IL-34 derived from the stimulated PDL cells with TNF-α appeared to synergistically function with CSF-1 in the CSF-1R-mediated maturation of osteoclastogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lin H, Lee E, Hestir K, Leo C, Huang M, Bosch E, Halenbeck R, Wu G, Zhou A, Behrens D, Hollenbaugh D, Linnemann T, Qin M, Wong J, Chu K, Doberstein SK, Williams LT (2008) Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320:807–811

    Article  CAS  PubMed  Google Scholar 

  2. Ma X, Lin WY, Chen Y, Stawicki S, Mukhyala K, Wu Y, Martin F, Bazan JF, Starovasnik MA (2012) Structural basis for the dual recognition of helical cytokines IL-34 and CSF-1 by CSF-1R. Structure 20:676–687

    Article  CAS  PubMed  Google Scholar 

  3. Garceau V, Smith J, Paton IR, Davey M, Fares MA, Sester DP, Burt DW, Hume DA (2010) Pivotal Advance: avian colony-stimulating factor 1 (CSF-1), interleukin-34 (IL-34), and CSF-1 receptor genes and gene products. J Leukoc Biol 87:753–764

    Article  CAS  PubMed  Google Scholar 

  4. Wei S, Nandi S, Chitu V, Yeung YG, Yu W, Huang M, Williams LT, Lin H, Stanley ER (2010) Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1 receptor-mediated regulation of myeloid cells. J Leukoc Biol 88:495–505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Barve RA, Zack MD, Weiss D, Song RH, Beidler D, Head RD (2013) Transcriptional profiling and pathway analysis of CSF-1 and IL-34 effects on human monocyte differentiation. Cytokine 63:10–17

    Article  CAS  PubMed  Google Scholar 

  6. Nakamichi Y, Udagawa N, Takahashi N (2013) IL-34 and CSF-1: similarities and differences. J Bone Miner Metab 31:486–495

    Article  CAS  PubMed  Google Scholar 

  7. Mills CD (2012) M1 and M2 Macrophages: oracles of Health and Disease. Crit Rev Immunol 32:463–488

    Article  CAS  PubMed  Google Scholar 

  8. Foucher ED, Blanchard S, Preisser L, Garo E, Ifrah N, Guardiola P, Delneste Y, Jeannin P (2013) IL-34 induces the differentiation of human monocytes into immunosuppressive macrophages. Antagonistic effects of GM-CSF and IFNgamma. PLoS ONE 8:e56045

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Schutze S, Machleidt T, Kronke M (1992) Mechanisms of tumor necrosis factor action. Semin Oncol 19:16–24

    CAS  PubMed  Google Scholar 

  10. Kotake S, Nanke Y (1840) Effect of TNFalpha on osteoblastogenesis from mesenchymal stem cells. Biochim Biophys Acta 1209–13:2014

    Google Scholar 

  11. Abiko Y, Saitoh M, Nishimura M, Yamazaki M, Sawamura D, Kaku T (2007) Role of beta-defensins in oral epithelial health and disease. Med Mol Morphol 40:179–184

    Article  CAS  PubMed  Google Scholar 

  12. Sawada T, Yamazaki T, Shibayama K, Yamaguchi Y, Ohshima M (2014) Ultrastructural immunolocalization of laminin 332 (laminin 5) at dento-gingival interface in Macaca fuscata monkey. Med Mol Morphol. doi:10.1007/s00795-014-0085-9

  13. Rhim EM, Ahn SJ, Kim JY, Chang YR, Kim KH, Lee HW, Jung SH, Kim EC, Park SH (2013) Cryopreservation induces macrophage colony stimulating factor from human periodontal ligament cells in vitro. Cryobiology 67:156–162

    Article  CAS  PubMed  Google Scholar 

  14. Bostrom EA, Lundberg P (2013) The newly discovered cytokine IL-34 is expressed in gingival fibroblasts, shows enhanced expression by pro-inflammatory cytokines, and stimulates osteoclast differentiation. PLoS ONE 8:e81665

    Article  PubMed Central  PubMed  Google Scholar 

  15. Droin N, Solary E (2010) Editorial: cSF1R, CSF-1, and IL-34, a “menage a trois” conserved across vertebrates. J Leukoc Biol 87:745–747

    Article  CAS  PubMed  Google Scholar 

  16. Sokos D, Everts V, de Vries TJ (2014) Role of periodontal ligament fibroblasts in osteoclastogenesis: a review. J Periodontal Res. doi:10.1111/jre.12197

  17. Ye J, Nishimura F, Orman R, Terranova VP (1995) Isolation, purification, and partial characterization of an autocrine periodontal ligament cell chemotactic factor. J Dent Res 74:1303–1309

    Article  CAS  PubMed  Google Scholar 

  18. Espinosa I, Edris B, Lee CH, Cheng HW, Gilks CB, Wang Y, Montgomery KD, Varma S, Li R, Marinelli RJ, West RB, Nielsen T, Beck AH, van de Rijn M (2011) CSF1 expression in nongynecological leiomyosarcoma is associated with increased tumor angiogenesis. Am J Pathol 179:2100–2107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Asschert JG, Vellenga E, Hollema H, van der Zee AG, de Vries EG (1997) Expression of macrophage colony-stimulating factor (M-CSF), interleukin-6, (IL-6), interleukin-1 beta (IL-1 beta), interleukin-11 (IL-11) and tumour necrosis factor-alpha (TNF-alpha) in p53-characterised human ovarian carcinomas. Eur J Cancer 33:2246–2251

    Article  CAS  PubMed  Google Scholar 

  20. Yu Y, Yang D, Qiu L, Okamura H, Guo J, Haneji T (2014) Tumor necrosis factor-alpha induces interleukin-34 expression through nuclear factorkappaB activation in MC3T3-E1 osteoblastic cells. Mol Med Rep 10:1371–1376

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Luo J, Elwood F, Britschgi M, Villeda S, Zhang H, Ding Z, Zhu L, Alabsi H, Getachew R, Narasimhan R, Wabl R, Fainberg N, James ML, Wong G, Relton J, Gambhir SS, Pollard JW, Wyss-Coray T (2013) Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival. J Exp Med 210:157–172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Sedgley CM, Botero TM (2012) Dental stem cells and their sources. Dent Clin North Am 56:549–561

    Article  PubMed  Google Scholar 

  23. Park JC, Kim YB, Kim HJ, Jang HS, Kim HS, Kim BO, Han KY (2001) Isolation and characterization of cultured human periodental ligament fibroblast-specific cDNAs. Biochem Biophys Res Commun 282:1145–1153

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in-Aid for Researchers, Hyogo College of Medicine and Grant-in-Aid for Scientific Research (C) (No. 26463150 and No. 26463151) from the Japan Society for the Promotion of Science. We have no competing interests. The protocol and consent guidelines for the experiments were approved by the Human Ethics Committee of the Hyogo College of Medicine (Approval No. 223) according to the Declaration of Helsinki. All subjects provided their informed consent for the use of their tissues for research in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mutsuki Kawabe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawabe, M., Ohyama, H., Kato-Kogoe, N. et al. Expression of interleukin-34 and colony stimulating factor-1 in the stimulated periodontal ligament cells with tumor necrosis factor-α. Med Mol Morphol 48, 169–176 (2015). https://doi.org/10.1007/s00795-014-0094-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-014-0094-8

Keywords

Navigation