Skip to main content

Advertisement

Log in

Linagliptin alleviates hepatic steatosis and inflammation in a mouse model of non-alcoholic steatohepatitis

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Non-alcoholic steatohepatitis (NASH) is a primary cause of cirrhosis and hepatocellular carcinoma. Dipeptidyl peptidase (DPP)-4 inhibitors are established therapies for type 2 diabetes and although DPP-4 inhibitors can reduce hepatic steatosis, their impact on local inflammation and fibrosis in NASH remains unknown. Using two different experimental treatment regimens (4- and 2-week treatments) in streptozotocin-treated neonatal mice on a high-fat diet, we show that the DPP-4 inhibitor linagliptin (10 and 30 mg/kg) significantly attenuated the NAS score from 4.9 ± 0.6 to 3.7 ± 0.4 and 3.6 ± 0.3, respectively, in the 4-week study. In the 2-week study, linagliptin 10 mg/kg significantly reduced NAS score from 4.1 ± 0.4 to 2.4 ± 0.4. Telmisartan was used as a positive control in both studies and lowered NAS score to 1.9 ± 0.7 and 1.4 ± 0.3, respectively. Due to streptozotocin treatment, elevated glucose levels were unchanged by either drug treatment. Further, linagliptin 10 mg/kg significantly reduced mRNA levels of SOCS-3 (from 1.68 ± 0.2 to 0.83 ± 0.08), IFN-γ (from 4.0 ± 0.5 to 2.3 ± 0.3), and TNF-α (from 5.7 ± 0.5 to 2.13 ± 0.3). The latter observation was confirmed by immunohistochemistry of TNF-α in liver specimens. In addition, using microautoradiography, we showed that the distribution of radiolabeled linagliptin was heterogeneous with the highest density associated with interlobular bile ducts and portal tracts (acini). In conclusion, these studies confirm that linagliptin has high exposure in hepatic tissue and has both anti-inflammatory and anti-steatotic activity in NASH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Klein T, Mark M, Schuppan D (2011) The dipeptidyl peptidase 4 inhibitor linagliptin is an effective therapeutic for metabolic liver disease in several rodent models of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Hepatology 54(4(Suppl)):369A

    Google Scholar 

  2. Klein T, Mark M (2012) Linagliptin is an effective therapeutic for non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Diabetes 61(Suppl 1):A265

    Google Scholar 

  3. Angulo P (2002) Nonalcoholic fatty liver disease. N Engl J Med 346:1221–1231

    Article  PubMed  CAS  Google Scholar 

  4. Nugent C, Younossi ZM (2007) Evaluation and management of obesity-related nonalcoholic fatty liver disease. Nat Clin Pract Gastroenterol Hepatol 4:432–441

    Article  PubMed  Google Scholar 

  5. Schuppan D, Gorrell MD, Klein T, Mark M, Afdhal NH (2010) The challenge of developing novel pharmacological therapies for non-alcoholic steatohepatitis. Liver Int 30:795–808

    Article  PubMed  CAS  Google Scholar 

  6. Ascha MS, Hanouneh IA, Lopez R, Tamimi TA, Feldstein AF, Zein NN (2010) The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology 51:1972–1978

    Article  PubMed  Google Scholar 

  7. Kudo H, Yata Y, Takahara T, Kawai K, Nakayama Y, Kanayama M, Oya T, Morita S, Sasahara M, Mann DA, Sugiyama T (2009) Telmisartan attenuates progression of steatohepatitis in mice: role of hepatic macrophage infiltration and effects on adipose tissue. Liver Int 29:988–996

    Article  PubMed  CAS  Google Scholar 

  8. Georgescu EF, Ionescu R, Niculescu M, Mogoanta L, Vancica L (2009) Angiotensin-receptor blockers as therapy for mild-to-moderate hypertension-associated non-alcoholic steatohepatitis. World J Gastroenterol 15:942–954

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Georgescu EF (2008) Angiotensin receptor blockers in the treatment of NASH/NAFLD: could they be a first-class option? Adv Ther 25:1141–1174

    Article  PubMed  CAS  Google Scholar 

  10. Jin H, Yamamoto N, Uchida K, Terai S, Sakaida I (2007) Telmisartan prevents hepatic fibrosis and enzyme-altered lesions in liver cirrhosis rat induced by a choline-deficient L-amino acid-defined diet. Biochem Biophys Res Commun 364:801–807

    Article  PubMed  CAS  Google Scholar 

  11. Fujita K, Yoneda M, Wada K, Mawatari H, Takahashi H, Kirikoshi H, Inamori M, Nozaki Y, Maeyama S, Saito S, Iwasaki T, Terauchi Y, Nakajima A (2007) Telmisartan, an angiotensin II type 1 receptor blocker, controls progress of nonalcoholic steatohepatitis in rats. Dig Dis Sci 52:3455–3464

    Article  PubMed  CAS  Google Scholar 

  12. Yang L, Bataller R, Dulyx J, Coffman TM, Ginès P, Rippe RA, Brenner DA (2005) Attenuated hepatic inflammation and fibrosis in angiotensin type 1a receptor deficient mice. J Hepatol 43:317–323

    Article  PubMed  CAS  Google Scholar 

  13. Yilmaz Y, Atug O, Yonal O, Duman D, Ozdogan O, Imeryuz N, Kalayci C (2009) Dipeptidyl peptidase IV inhibitors: therapeutic potential in nonalcoholic fatty liver disease. Med Sci Monit 15:HY1–HY5

    Google Scholar 

  14. Balaban YH, Korkusuz P, Simsek H, Gokcan H, Gedikoglu G, Pinar A, Hascelik G, Asan E, Hamaloglu E, Tatar G (2007) Dipeptidyl peptidase IV (DDP IV) in NASH patients. Ann Hepatol 6:242–250

    PubMed  CAS  Google Scholar 

  15. Kern M, Kloting N, Niessen HG, Thomas L, Stiller D, Mark M, Klein T, Bluher M (2012) Linagliptin improves insulin sensitivity and hepatic steatosis in diet-induced obesity. PLoS One 7:e38744

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Klein T, Niessen HG, Ittrich C, Mayoux E, Mueller HP, Cheetham S, Stiller D, Kassubek J, Mark M (2012) Evaluation of body fat composition after linagliptin treatment in a rat model of diet-induced obesity: a magnetic resonance spectroscopy study in comparison with sibutramine. Diabetes Obes Metab 14:1050–1053

    Article  PubMed  CAS  Google Scholar 

  17. Souza-Mello V, Gregorio BM, Cardoso-de-Lemos FS, de Carvalho L, Aguila MB, Mandarim-de-Lacerda CA (2010) Comparative effects of telmisartan, sitagliptin and metformin alone or in combination on obesity, insulin resistance, and liver and pancreas remodelling in C57BL/6 mice fed on a very high-fat diet. Clin Sci (Lond) 119:239–250

    Article  CAS  Google Scholar 

  18. Shirakawa J, Fujii H, Ohnuma K, Sato K, Ito Y, Kaji M, Sakamoto E, Koganei M, Sasaki H, Nagashima Y, Amo K, Aoki K, Morimoto C, Takeda E, Terauchi Y (2011) Diet-induced adipose tissue inflammation and liver steatosis are prevented by DPP-4 inhibition in diabetic mice. Diabetes 60:1246–1257

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Ding X, Saxena NK, Lin S, Gupta NA, Anania FA (2006) Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice. Hepatology 43:173–181

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Anstee QM, Goldin RD (2006) Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int J Exp Pathol 87:1–16

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Larter CZ, Yeh MM (2008) Animal models of NASH: getting both pathology and metabolic context right. J Gastroenterol Hepatol 23:1635–1648

    Article  PubMed  Google Scholar 

  22. Yilmaz Y, Yonal O, Deyneli O, Celikel CA, Kalayci C, Duman DG (2012) Effects of sitagliptin in diabetic patients with nonalcoholic steatohepatitis. Acta Gastroenterol Belg 75:240–244

    PubMed  Google Scholar 

  23. Fujii M, Shibazaki Y, Wakamatsu K, Honda Y, Kawauchi Y, Suzuki K, Arumugam S, Watanabe K, Ichida T, Asakura H, Yoneyama H (2013) A murine model for non-alcoholic steatohepatitis showing evidence of association between diabetes and hepatocellular carcinoma. Med Mol Morphol. doi:10.1007/s00795-013-0016-1

    Google Scholar 

  24. Eckhardt M, Langkopf E, Mark M, Tadayyon M, Thomas L, Nar H, Pfrengle W, Guth B, Lotz R, Sieger P, Fuchs H, Himmelsbach F (2007) 8-(3-(R)-aminopiperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin -2-ylmethyl)-3,7-dihydropurine-2,6-dione (BI 1356), a highly potent, selective, long-acting, and orally bioavailable DPP-4 inhibitor for the treatment of type 2 diabetes. J Med Chem 50:6450–6453

    Article  PubMed  CAS  Google Scholar 

  25. Thomas L, Eckhardt M, Langkopf E, Tadayyon M, Himmelsbach F, Mark M (2008) (R)-8-(3-amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylm ethyl)-3,7-dihydro-purine-2,6-dione (BI 1356), a novel xanthine-based dipeptidyl peptidase 4 inhibitor, has a superior potency and longer duration of action compared with other dipeptidyl peptidase-4 inhibitors. J Pharmacol Exp Ther 325:175–182

    Article  PubMed  CAS  Google Scholar 

  26. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS, Unalp-Arida A, Yeh M, McCullough AJ, Sanyal AJ (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–1321

    Article  PubMed  Google Scholar 

  27. Yoneyama H, Matsuno K, Zhang Y, Murai M, Itakura M, Ishikawa S, Hasegawa G, Naito M, Asakura H, Matsushima K (2001) Regulation by chemokines of circulating dendritic cell precursors, and the formation of portal tract-associated lymphoid tissue, in a granulomatous liver disease. J Exp Med 193:35–49

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Matsuno K, Ezaki T, Kudo S, Uehara Y (1996) A life stage of particle-laden rat dendritic cells in vivo: their terminal division, active phagocytosis, and translocation from the liver to the draining lymph. J Exp Med 183:1865–1878

    Article  PubMed  CAS  Google Scholar 

  29. Fujioka N, Mukaida N, Harada A, Akiyama M, Kasahara T, Kuno K, Ooi A, Mai M, Matsushima K (1995) Preparation of specific antibodies against murine IL-1ra and the establishment of IL-1ra as an endogenous regulator of bacteria-induced fulminant hepatitis in mice. J Leukoc Biol 58:90–98

    PubMed  CAS  Google Scholar 

  30. Greischel A, Binder R, Baierl J (2010) The dipeptidyl peptidase-4 inhibitor linagliptin exhibits time- and dose-dependent localization in kidney, liver, and intestine after intravenous dosing: results from high resolution autoradiography in rats. Drug Metab Dispos 38:1443–1448

    Article  PubMed  CAS  Google Scholar 

  31. Graefe-Mody U, Retlich S, Friedrich C (2012) Clinical pharmacokinetics and pharmacodynamics of linagliptin. Clin Pharmacokinet 51:411–427

    Article  PubMed  CAS  Google Scholar 

  32. He M, Su H, Gao W, Johansson SM, Liu Q, Wu X, Liao J, Young AA, Bartfai T, Wang MW (2010) Reversal of obesity and insulin resistance by a non-peptidic glucagon-like peptide-1 receptor agonist in diet-induced obese mice. PLoS One 5:e14205

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Sharma S, Mells JE, Fu PP, Saxena NK, Anania FA (2011) GLP-1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy. PLoS One 6:e25269

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Svegliati-Baroni G, Saccomanno S, Rychlicki C, Agostinelli L, De Minicis S, Candelaresi C, Faraci G, Pacetti D, Vivarelli M, Nicolini D, Garelli P, Casini A, Manco M, Mingrone G, Risaliti A, Frega GN, Benedetti A, Gastaldelli A (2011) Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis. Liver Int 31:1285–1297

    Article  PubMed  CAS  Google Scholar 

  35. Stienstra R, Saudale F, Duval C, Keshtkar S, Groener JE, van Rooijen N, Staels B, Kersten S, Muller M (2010) Kupffer cells promote hepatic steatosis via interleukin-1beta-dependent suppression of peroxisome proliferator-activated receptor alpha activity. Hepatology 51:511–522

    Article  PubMed  CAS  Google Scholar 

  36. Sachithanandan N, Fam BC, Fynch S, Dzamko N, Watt MJ, Wormald S, Honeyman J, Galic S, Proietto J, Andrikopoulos S, Hevener AL, Kay TW, Steinberg GR (2010) Liver-specific suppressor of cytokine signaling-3 deletion in mice enhances hepatic insulin sensitivity and lipogenesis resulting in fatty liver and obesity. Hepatology 52:1632–1642

    Article  PubMed  CAS  Google Scholar 

  37. Yoneyama H, Ichida T (2005) Recruitment of dendritic cells to pathological niches in inflamed liver. Med Mol Morphol 38:136–141

    Article  PubMed  Google Scholar 

  38. Yoneyama H, Kawasaki S, Matsushima K (2000) Regulation of Th1 and Th2 immune responses by chemokines. Springer Semin Immunopathol 22:329–344

    Article  PubMed  CAS  Google Scholar 

  39. Fadini GP, Boscaro E, Albiero M, Menegazzo L, Frison V, de Kreutzenberg S, Agostini C, Tiengo A, Avogaro A (2010) The oral dipeptidyl peptidase-4 inhibitor sitagliptin increases circulating endothelial progenitor cells in patients with type 2 diabetes: possible role of stromal-derived factor-1α. Diabetes Care 33:1607–1609

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Menten P, Struyf S, Schutyser E, Wuyts A, De Clercq E, Schols D, Proost P, Van Damme J (1999) The LD78β isoform of MIP-1α is the most potent CCR5 agonist and HIV-1-inhibiting chemokine. J Clin Invest 104:R1–R5

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Proost P, Menten P, Struyf S, Schutyser E, De Meester I, Van Damme J (2000) Cleavage by CD26/dipeptidyl peptidase IV converts the chemokine LD78β into a most efficient monocyte attractant and CCR1 agonist. Blood 96:1674–1680

    PubMed  CAS  Google Scholar 

  42. Mells JE, Fu PP, Sharma S, Olson D, Cheng L, Handy JA, Saxena NK, Sorescu D, Anania FA (2012) Glp-1 analog, liraglutide, ameliorates hepatic steatosis and cardiac hypertrophy in C57BL/6J mice fed a Western diet. Am J of Physiol Gastrointest Liver Physiol 302:G225–G235

    Article  CAS  Google Scholar 

  43. Kroller-Schon S, Knorr M, Hausding M, Oelze M, Schuff A, Schell R, Sudowe S, Scholz A, Daub S, Karbach S, Kossmann S, Gori T, Wenzel P, Schulz E, Grabbe S, Klein T, Munzel T, Daiber A (2012) Glucose-independent improvement of vascular dysfunction in experimental sepsis by dipeptidyl-peptidase 4 inhibition. Cardiovasc Res 96:140–149

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs M. Sakurai and S. Furuuchi for their technical assistance. This work was supported by Boehringer Ingelheim. The authors were fully responsible for all content and editorial decisions, were involved at all stages of manuscript development, and have approved the final version. Medical writing assistance, supported financially by Boehringer Ingelheim, was provided by Paul MacCallum, of Envision Scientific Solutions during the preparation of this article.

Conflict of interest

Boehringer Ingelheim is the manufacturer of linagliptin. Stelic Institute & Co. is a contract research organisation specialising in animal models of liver-related disease.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Klein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, T., Fujii, M., Sandel, J. et al. Linagliptin alleviates hepatic steatosis and inflammation in a mouse model of non-alcoholic steatohepatitis. Med Mol Morphol 47, 137–149 (2014). https://doi.org/10.1007/s00795-013-0053-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-013-0053-9

Keywords

Navigation