Skip to main content

Advertisement

Log in

Identification of DNA-dependent protein kinase catalytic subunit as a novel interaction partner of lymphocyte enhancer factor 1

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Lymphocyte enhancer factor 1 (LEF1), a member of the LEF/T-cell-specific factor (TCF) family of the high mobility group domain transcription factors, acts downstream in canonical Wnt signaling. Aberrant transactivation of LEF1 contributes to the tumorigenesis of colonic neoplasms, sebaceous skin tumors, and lymphoblastic leukemia. LEF1-associated proteins are crucial for regulating its transcriptional activity. In this study, glutathione-S-transferase pull-down assay and mass spectrometry enabled identification of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) as a novel interaction partner for LEF1. The interaction between LEF1 and DNA-PKcs was confirmed using in vivo co-immunoprecipitation. Furthermore, double immunofluorescence observations showed that LEF1 and DNA-PKcs colocalized in the nuclei of colon adenocarcinoma cell lines. Identification of the interaction between LEF1 and DNA-PKcs may provide clues for a novel therapy for cancer treatment as well as for understanding LEF1-mediated transcriptional regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shimomura A, Ohkuma M, Iizuka-Kogo A, Kohu K, Nomura R, Miyachi E, Akiyama T, Senda T (2007) Requirement of the tumour suppressor APC for the clustering of PSD-95 and AMPA receptors in hippocampal neurons. Eur J Neurosci 26:903–912

    Article  PubMed  Google Scholar 

  2. Senda T, Shimomura A, Iizuka-Kogo A (2005) Adenomatous polyposis coli (Apc) tumor suppressor gene as a multifunctional gene. Anat Sci Int 80:121–131

    Article  PubMed  CAS  Google Scholar 

  3. Gregorieff A, Clevers H (2005) Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev 19:877–890

    Article  PubMed  CAS  Google Scholar 

  4. Bienz M, Clevers H (2003) Armadillo/beta-catenin signals in the nucleus: proof beyond a reasonable doubt? Nat Cell Biol 5:179–182

    Article  PubMed  CAS  Google Scholar 

  5. Xing Y, Clements WK, Le Trong I, Hinds TR, Stenkamp R, Kimelman D, Xu W (2004) Crystal structure of a beta-catenin/APC complex reveals a critical role for APC phosphorylation in APC function. Mol Cell 15:523–533

    Article  PubMed  CAS  Google Scholar 

  6. Xing Y, Clements WK, Kimelman D, Xu W (2003) Crystal structure of a beta-catenin/axin complex suggests a mechanism for the beta-catenin destruction complex. Genes Dev 17:2753–2764

    Article  PubMed  CAS  Google Scholar 

  7. Liu C, Kato Y, Zhang Z, Do VM, Yankner BA, He X (1999) Beta-Trcp couples beta-catenin phosphorylation-degradation and regulates Xenopus axis formation. Proc Natl Acad Sci USA 96:6273–6278

    Article  PubMed  CAS  Google Scholar 

  8. Tamai K, Zeng X, Liu C, Zhang X, Harada Y, Chang Z, He X (2004) A mechanism for Wnt coreceptor activation. Mol Cell 13:149–156

    Article  PubMed  CAS  Google Scholar 

  9. Waterman ML, Fischer WH, Jones KA (1991) A thymus-specific member of the HMG protein family regulates the human T cell receptor C alpha enhancer. Genes Dev 5:656–669

    Article  PubMed  CAS  Google Scholar 

  10. Conacci-Sorrell ME, Ben-Yedidia T, Shtutman M, Feinstein E, Einat P, Ben-Ze’ev A (2002) Nr-CAM is a target gene of the beta-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes Dev 16:2058–2072

    Article  PubMed  CAS  Google Scholar 

  11. Takeda H, Lyle S, Lazar AJ, Zouboulis CC, Smyth I, Watt FM (2006) Human sebaceous tumors harbor inactivating mutations in LEF1. Nat Med 12:395–397

    Article  PubMed  CAS  Google Scholar 

  12. Gutierrez A, Sanda T, Ma W, Zhang J, Grebliunaite R, Dahlberg S, Neuberg D, Protopopov A, Winter SS, Larson RS, Borowitz MJ, Silverman LB, Chin L, Hunger SP, Jamieson C, Sallan SE, Look AT (2010) Inactivation of LEF1 in T-cell acute lymphoblastic leukemia. Blood 115:2845–2851

    Article  PubMed  Google Scholar 

  13. Tandon B, Peterson L, Gao J, Nelson B, Ma S, Rosen S, Chen YH (2011) Nuclear overexpression of lymphoid-enhancer-binding factor 1 identifies chronic lymphocytic leukemia/small lymphocytic lymphoma in small B-cell lymphomas. Mod Pathol 24:1433–1443

    Article  PubMed  CAS  Google Scholar 

  14. Sierra J, Yoshida T, Joazeiro CA, Jones KA (2006) The APC tumor suppressor counteracts beta-catenin activation and H3K4 methylation at Wnt target genes. Genes Dev 20:586–600

    Article  PubMed  CAS  Google Scholar 

  15. Collis SJ, DeWeese TL, Jeggo PA, Parker AR (2005) The life and death of DNA-PK. Oncogene 24:949–961

    Article  PubMed  CAS  Google Scholar 

  16. Peterson SR, Jesch SA, Chamberlin TN, Dvir A, Rabindran SK, Wu C, Dynan WS (1995) Stimulation of the DNA-dependent protein kinase by RNA polymerase II transcriptional activator proteins. J Biol Chem 270:1449–1454

    Article  PubMed  CAS  Google Scholar 

  17. Lees-Miller SP, Chen YR, Anderson CW (1990) Human cells contain a DNA-activated protein kinase that phosphorylates simian virus 40 T antigen, mouse p53, and the human Ku autoantigen. Mol Cell Biol 10:6472–6481

    PubMed  CAS  Google Scholar 

  18. Lebrun P, Montminy MR, Van Obberghen E (2005) Regulation of the pancreatic duodenal homeobox-1 protein by DNA-dependent protein kinase. J Biol Chem 280:38203–38210

    Article  PubMed  CAS  Google Scholar 

  19. Ishiguro A, Ideta M, Mikoshiba K, Chen DJ, Aruga J (2007) ZIC2-dependent transcriptional regulation is mediated by DNA-dependent protein kinase, poly(ADP-ribose) polymerase, and RNA helicase A. J Biol Chem 282:9983–9995

    Article  PubMed  CAS  Google Scholar 

  20. Schild-Poulter C, Shih A, Yarymowich NC, Hache RJ (2003) Down-regulation of histone H2B by DNA-dependent protein kinase in response to DNA damage through modulation of octamer transcription factor 1. Cancer Res 63:7197–7205

    PubMed  CAS  Google Scholar 

  21. Chibazakura T, Watanabe F, Kitajima S, Tsukada K, Yasukochi Y, Teraoka H (1997) Phosphorylation of human general transcription factors TATA-binding protein and transcription factor IIB by DNA-dependent protein kinase: synergistic stimulation of RNA polymerase II basal transcription in vitro. Eur J Biochem 247:1166–1173

    Article  PubMed  CAS  Google Scholar 

  22. Mukherjee B, Kessinger C, Kobayashi J, Chen BP, Chen DJ, Chatterjee A, Burma S (2006) DNA-PK phosphorylates histone H2AX during apoptotic DNA fragmentation in mammalian cells. DNA Repair (Amst) 5:575–590

    Article  CAS  Google Scholar 

  23. Dynan WS, Yoo S (1998) Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res 26:1551–1559

    Article  PubMed  CAS  Google Scholar 

  24. Giffin W, Torrance H, Rodda DJ, Prefontaine GG, Pope L, Hache RJ (1996) Sequence-specific DNA binding by Ku autoantigen and its effects on transcription. Nature (Lond) 380:265–268

    Article  CAS  Google Scholar 

  25. Idogawa M, Masutani M, Shitashige M, Honda K, Tokino T, Shinomura Y, Imai K, Hirohashi S, Yamada T (2007) Ku70 and poly(ADP-ribose) polymerase-1 competitively regulate beta-catenin and T-cell factor-4-mediated gene transactivation: possible linkage of DNA damage recognition and Wnt signaling. Cancer Res 67:911–918

    Article  PubMed  CAS  Google Scholar 

  26. Labbe E, Letamendia A, Attisano L (2000) Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-beta and wnt pathways. Proc Natl Acad Sci USA 97:8358–8363

    Article  PubMed  CAS  Google Scholar 

  27. Nishita M, Hashimoto MK, Ogata S, Laurent MN, Ueno N, Shibuya H, Cho KW (2000) Interaction between Wnt and TGF-beta signalling pathways during formation of Spemann’s organizer. Nature (Lond) 403:781–785

    Article  CAS  Google Scholar 

  28. Shimada M, Niida H, Zineldeen DH, Tagami H, Tanaka M, Saito H, Nakanishi M (2008) Chk1 is a histone H3 threonine 11 kinase that regulates DNA damage-induced transcriptional repression. Cell 132:221–232

    Article  PubMed  CAS  Google Scholar 

  29. Gentile M, Latonen L, Laiho M (2003) Cell cycle arrest and apoptosis provoked by UV radiation-induced DNA damage are transcriptionally highly divergent responses. Nucleic Acids Res 31:4779–4790

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kazuhiro Yanagisawa, Yohei Takeuchi, and Kazuko Hikita from the Department of Anatomy I, Fujita Health University School of Medicine, for their technical and secretarial assistance. This work was supported by a Grant-in-Aid from JSPS KAKENHI Grant Number 24592567 and by grants from the Promotion and Mutual Aid Corporation for Private Schools of Japan and from the Fujita Health University Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Shimomura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimomura, A., Takasaki, A., Nomura, R. et al. Identification of DNA-dependent protein kinase catalytic subunit as a novel interaction partner of lymphocyte enhancer factor 1. Med Mol Morphol 46, 14–19 (2013). https://doi.org/10.1007/s00795-012-0002-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-012-0002-z

Keywords

Navigation