Skip to main content
Log in

Morphofunctional changes of the astrocyte in rat hippocampus under different corticosteroid conditions

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

In the present study, we examined the changes in the morphofunction of astrocytes in rat hippocampus under different circulating corticosteroid conditions by immunohistochemistry analysis of glial fibrillary acidic protein (GFAP) and ultra-high-voltage electron microscopy. Each GFAP-immunoreactive cell showed a hypertrophic appearance with well-developed thicker fibrous processes, and the number and the density of GFAP-immunoreactive cells were increased 4 weeks after adrenalectomy, whereas the changes were restored to the sham-control level with corticosterone replacement. The morphometric changes were observed in particular around the pyramidal neurons of CA1 and in the subgranular layer of dentate gyrus. The quantitative analysis clearly showed a significant increase in the number and the density of GFAP-immunoreactive cells in the adrenalectomy group; following corticosterone replacement, these increases were returned to the shamcontrol level. These changes were also specifically revealed by stereo-observation with ultra-high-voltage electron microscopy. The astrocyte showed more complicated fine three-dimensional branching after adrenalectomy. These results suggested that both the structure and function of astrocytes were modulated by corticosteroids via glucocorticoid receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McEwen BS, De Kloet ER, Rostene W (1986) Adrenal steroid receptors and actions in the nervous system. Physiol Rev 66:1121–1188

    CAS  PubMed  Google Scholar 

  2. Aronsson M, Fuxe K, Dong Y, Agnati LF, Okret S, Gustafsson JA (1988) Localization of glucocorticoid receptor mRNA in the male rat brain by in situ hybridization. Proc Natl Acad Sci USA 85: 9331–9335

    Article  CAS  PubMed  Google Scholar 

  3. Reul JM, Pearce PT, Funder JW, Krozowski ZS (1989) Type I and type II corticosteroid receptor gene expression in the rat: effect of adrenalectomy and dexamethasone administration. Mol Endocrinol 3:1674–1680

    Article  CAS  PubMed  Google Scholar 

  4. Cintra A, Zoli M, Rosén L, Agnati LF, Okret S, Wikström A-C, Gustafsson J-Å, Fuxe K (1994) Mapping and computer assisted morphometry and microdensitometry of glucocorticoid receptor immunoreactive neurons and glial cells in the rat central nervous system. Neuroscience 62:843–897

    Article  CAS  PubMed  Google Scholar 

  5. De Kloet ER (1995) Steroids, stability and stress. Front Neuroendocrinol 6:416–425

    Article  Google Scholar 

  6. Bas VS, Erica P, Diane H, Hans TM (1996) Partial colocalization of glucocorticoid and mineralocorticoid receptors in discrete compartments in nuclei of rat hippocampus neuron. J Cell Sci 109:787–792

    Google Scholar 

  7. Ito T, Morita N, Nishi M, Kawata M (2000) In vivo and in vitro immunocytochemistry for the distribution of mineralocorticoid receptor with the use of specific antibody. Neurosci Res 37:173–182

    Article  CAS  PubMed  Google Scholar 

  8. Han F, Ozawa H, Matsuda K, Nishi M, Kawata M (2005) Colocalization of mineralocorticoid receptor and glucocorticoid receptor in the hippocampus and hypothalamus. Neurosci Res 51:371–381

    Article  CAS  PubMed  Google Scholar 

  9. Fuxe K, Wikstrom A, Okret S, Agnati LF, Harfstrand A, Yu ZY, Granholm M, Zoli M, Vale W (1985) Mapping of glucocorticoid receptor immunoreactive neurons in the rat tel- and diencephalons using a monoclonal antibody against rat liver glucocorticoid receptor. Endocrinology 117:1803–1812

    Article  CAS  PubMed  Google Scholar 

  10. Vielkind U, Walencewicz A, Levine JM, Bohn MC (1990) Type II glucocorticoid receptors are expressed in oligodendrocytes and astrocytes. J Neurosci Res 27:360–373

    Article  CAS  PubMed  Google Scholar 

  11. Bohn MC, Howard E, Vielkind U, Krozowski Z (1991) Glial cells express both mineralocorticoid and glucocorticoid receptors. J Steroid Biochem Mol Biol 40:105–111

    Article  CAS  PubMed  Google Scholar 

  12. Chou YC, Luttge WG, Sumners C (1990) Characterization of glucocorticoid type II receptors in neuronal and glial cultures from rat brain. J Neuroendocrinol 2:29–38

    Article  CAS  PubMed  Google Scholar 

  13. Chou YC, Luttge WG, Sumners C (1991) Expression of mineralocorticoid type I and glucocorticoid type II receptors in astrocyte glia as a function of time in culture. Brain Res 16:55–61

    Google Scholar 

  14. Hwang IK, Yoo KY, Nam YS, Choi JH, Lee IS, Kwon Y-G, Kang T-C, Kim Y-S, Won MH (2006) Mineralocorticoid and glucocorticoid receptor expressions in astrocytes and microglia in the gerbil hippocampal CA1 region after ischemic insult. Neurosci Res 54:319–327

    Article  CAS  PubMed  Google Scholar 

  15. Sloviter RS, Valiquette G, Abrams GM, Ronk EC, Sollas AL, Paul LA, Neubort S (1989) Selective loss of hippocampal granule cells in the mature rat brain after adrenalectomy. Science 243:535–538

    Article  CAS  PubMed  Google Scholar 

  16. Sloviter RS, Sollas AL, Dean E, Neubort S (1993) Adrenalectomy-induced granule cell degeneration in the rat hippocampal dentate gyrus: characterization of an in vivo model of controlled neuronal death. J Comp Neurol 330:324–336

    Article  CAS  PubMed  Google Scholar 

  17. Nichols NR, Masters JN, Finch CE (1994) Cloning of steroid responsive mRNAs by differential hybridization. Methods Neurosci 22:296–313

    CAS  Google Scholar 

  18. Masters JN, Cotman SL, Osterberg HH, Nichols NR, Finch CE (1996) Modulation of a novel RNA in brain neurons by glucocorticoid and mineralocorticoid receptors. Neuroendocrinology 63:28–38

    Article  CAS  PubMed  Google Scholar 

  19. O’Callaghan JP, Brinton RE, McEwen BS (1991) Glucocorticoids regulate the synthesis of glial fibrillary acidic protein in intact and adrenalectomized rats but do not affect its expression following brain injury. J Neurochem 57:860–869

    Article  PubMed  Google Scholar 

  20. Gould E, Cameron HA, Daniels DC, Woolley CS, McEwen BS (1992) Adrenal hormones suppress cell division in the adult rat dentate gyrus. J Neurosci 12:3642–3650

    CAS  PubMed  Google Scholar 

  21. Krugers HJ, Medema RM, Postema F, Korf J (1994) Induction of glial fibrillary acidic protein immunoreactivity in the rat dentate gyrus after adrenalectomy: comparison with neurodegenerative changes using silver impregnation. Hippocampus 4:307–314

    Article  CAS  PubMed  Google Scholar 

  22. Smith SJ (1994) Neural signaling. Neuromodulatory astrocytes. Curr Biol 4:807–810

    Article  CAS  Google Scholar 

  23. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215

    Article  CAS  PubMed  Google Scholar 

  24. LoTurco JJ (2000) Neural circuits in the 21st century: synaptic networks of neurons and glia. Proc Natl Acad Sci USA 97:8196–8197

    Article  CAS  PubMed  Google Scholar 

  25. Parpura V, Haydon PG (2000) Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc Natl Acad Sci USA 97:8629–8634

    Article  CAS  PubMed  Google Scholar 

  26. Haydon PG (2001) Glia: Listening and talking to the synapse. Nat Rev Neurosci 2:185–193

    Article  CAS  PubMed  Google Scholar 

  27. Fieles RD, Stevens B (2002) New insights into neuron-glia communication. Science 298:556–562

    Article  Google Scholar 

  28. Nichols NR, Osterburg HH, Masters JN, Millar SL, Finch CE (1990) Messenger RNA for glial fibrillary acidic protein is decreased in rat brain following acute and chronic corticosterone treatment. Mol Brain Res 7:1–7

    Article  CAS  PubMed  Google Scholar 

  29. Nichols NR, Agolley D, Zieba M, Bye N (2005) Glucocorticoid regulation of glial responses during hippocampal neurodegeneration and regeneration. Brain Res Rev 48:287–301

    Article  CAS  PubMed  Google Scholar 

  30. Hama K, Arii T, Kosaka T (1994) Three-dimensional organization of neuronal and glial processes: high voltage electron microscopy. Microsc Res Tech 29:357–367

    Article  CAS  PubMed  Google Scholar 

  31. Morimoto M, Morita N, Ozawa H, Yokoyama K, Kawata M (1996) Distribution of glucocorticoid receptor immunoreactivity and mRNA in the rat brain: an immunohistochemical and in situ hybridization study. Neurosci Res 26:235–269

    Article  CAS  PubMed  Google Scholar 

  32. Sapolsky RM, Krey LC, McEwen BS (1985) Prolonged glucocorticoid exposure reduces hippocampal neuron number: implication for aging. J Neurosci 5:1222–1227

    CAS  PubMed  Google Scholar 

  33. Gould E, Woolley CS, McEwen BS (1990) Short-term glucocorticoid manipulations affect neuronal morphology and survival in the adult dentate gyrus. Neuroscience 37:367–375

    Article  CAS  PubMed  Google Scholar 

  34. Hu ZT, Yuri K, Ozawa H, Lu HP, Kawate M (1997) The in vivo time course for elimination of adrenalectomy-induced apoptosis profiles from the granule cell layer of the rat hippocampus. J Neurosci 17:3981–3989

    CAS  PubMed  Google Scholar 

  35. Kerr JFR, Wyllie AH, Currie AK (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 28:239–257

    Article  Google Scholar 

  36. Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature (Lond) 284:555–556

    Article  CAS  Google Scholar 

  37. Arends MD, Morris RG, Wyllie AH (1990) Apoptosis: the role of the endonuclease. Am J Pathol 136:593–608

    CAS  PubMed  Google Scholar 

  38. Laping NJ, Nichols NR, Day JR, Johnson SA, Finch CE (1994) Transcriptional control of glial fibrillary acidic protein and glutamine synthetase in vitro shows opposite responses to corticosterone in the hippocampus. Endocrinology 135:1928–1933

    Article  CAS  PubMed  Google Scholar 

  39. Imai H, Nishimura T, Sadamatsu M, Liu Y, Kabuto M, Kato N (2001) Type II glucocorticoid receptors are involved in neuronal death and astrocyte activation induced by trimethyltin in the rat hippocampus. Exp Neurol 171:22–28

    Article  CAS  PubMed  Google Scholar 

  40. Hama K, Arii T, Kosaka T (1989) Three-dimensional morphometrical study of dendritic spines of the granule cell in the rat dentate gyrus with HVEM stereo image. J Electron Microsc Tech 12: 80–87

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Ying Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, CY., Matsuzaki, T., Iijima, N. et al. Morphofunctional changes of the astrocyte in rat hippocampus under different corticosteroid conditions. Med Mol Morphol 45, 206–213 (2012). https://doi.org/10.1007/s00795-011-0561-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-011-0561-4

Key words

Navigation