Skip to main content

Advertisement

Log in

Irsogladine maleate ameliorates inflammation and fibrosis in mice with chronic colitis induced by dextran sulfate sodium

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Intestinal fibrosis is a common and severe complication of inflammatory bowel disease (IBD), especially Crohn’s disease (CD). To investigate the therapeutic approach to intestinal fibrosis, we have developed a mouse model of intestinal fibrosis by administering dextran sulfate sodium (DSS) and examining the effects of irsogladine maleate (IM) [2,4-diamino-6-(2,5-dichlorophenyl)-s-triazine maleate], which has been widely used as an antiulcer drug for gastric mucosa in Japan, on DDS-induced chronic colitis. In this experimental colitis lesion, several pathognomonic changes were found: increased deposition of collagen, increased number of profibrogenic mesenchymal cells such as fibroblasts (vimentin+, α-SMA) and myofibroblasts (vimentin+, α-SMA+) in both mucosa and submucosa of the colon with infiltrating inflammatory cells, and increased mRNA expressions of collagen type I, transforming growth factor (TGF)-β, matrix metalloproteinase (MMP)-2, and tissue inhibitor of matrix metalloproteinase (TIMP)-1. When IM was administered intrarectally to this colitis, all these pathological changes were significantly decreased or suppressed, suggesting a potential adjunctive therapy for intestinal fibrosis. IM could consequently reduce fibrosis in DSS colitis by direct or indirect effect on profibrogenic factors or fibroblasts. Therefore, the precise effect of IM on intestinal fibrosis should be investigated further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Podolsky DK (2002) Inflammatory bowel disease. N Engl J Med 347:417–429

    Article  PubMed  CAS  Google Scholar 

  2. Rutgeerts P, Vermeire S, Van Assche G (2009) Biological therapies for inflammatory bowel diseases. Gastroenterology 136:1182–1197

    Article  PubMed  CAS  Google Scholar 

  3. van Assche G, Geboes K, Rutgeerts P (2004) Medical therapy for Crohn’s disease strictures. Inflamm Bowel Dis 10:55–60

    Article  PubMed  Google Scholar 

  4. Regan MC, Flavin BM, Fitzpatrick JM, O’Connell PR (2000) Stricture formation in Crohn’s disease. The role of intestinal fibroblasts. Ann Surg 231:46–50

    Article  PubMed  CAS  Google Scholar 

  5. Yamamoto T (2005) Factors affecting recurrence after surgery for Crohn’s disease. World J Gastroenterol 11:3971–3979

    PubMed  Google Scholar 

  6. Moskovitz DN, Assche GV, Maenhout B, Arts J, Ferrante M, Vermeire S, Rutgeerts P (2006) Incidence of colectomy during long-term follow-up after cyclosporine-induced remission of severe ulcerative colitis. Clin Gastroenterol Hepatol 4:760–765

    Article  PubMed  CAS  Google Scholar 

  7. Hiraishi H, Haruma K, Miwa H, Goto H (2010) Clinical trial: irsogladine maleate, a mucosal protective drug, accelerates gastric ulcer healing after treatment for eradication of Helicobacter pylori infection: the results of a multicentre, double-blind, randomized clinical trial (IMPACT study). Aliment Pharmacol Ther 31(8): 824–833

    PubMed  CAS  Google Scholar 

  8. Murakami K, Okimoto T, Kodama M, Tanahashi J, Mizukami K, Shuto M, Abe H, Arita T, Fujioka T (2011) Comparison of the efficacy of irsogladine maleate and famotidine for the healing of gastric ulcers after Helicobacter pylori eradication therapy: a randomized, controlled, prospective study. Scand J Gastroenterol 46(3):287–292

    Article  PubMed  CAS  Google Scholar 

  9. Kyoi T, Oka M, Noda K, Ukai Y (2003) Irsogladine prevents monochloramine-induced gastric mucosal lesions by improving the decrease in mucosal blood flow due to the disturbance of nitric oxide synthesis in rats. J Pharmacol Sci 93:314–320

    Article  PubMed  CAS  Google Scholar 

  10. Tatsumi Y, Tanino M, Kodama T, Kashima K, Katsura M, Okua S (1998) Irsogladine maleate may preserve gastric mucosal hydrophobicity against ethanol in phospholipids independent way in rats. Jpn J Pharmacol 77:293–299

    Article  PubMed  CAS  Google Scholar 

  11. Kyoi T, Kitazawa S, Tajima K, Zhang X, Ukai Y (2004) Phosphodiesterase type IV inhibitors prevent ischemia-reperfusion-induced gastric injury in rats. J Pharmacol Sci 95:321–328

    Article  PubMed  CAS  Google Scholar 

  12. Zhang X, Tajima K, Kageyama K, Kyoi T (2008) Irsogladine maleate suppresses indomethacin-induced elevation of proinflammatory cytokines and gastric injury in rats. World J Gastroenterol 14:4784–4790

    Article  PubMed  CAS  Google Scholar 

  13. Ueda F, Kameda Y, Yamamoto O, Shibata Y (1994) Beta-adrenergic regulation of gap-junctional intercellular communication in cultured rabbit gastric epithelial cell. J Pharmacol Exp Ther 271:397–402

    PubMed  CAS  Google Scholar 

  14. Sato M, Manabe N, Hata J, Ishii M, Kamada T, Kusunoki H, Shiotani A, Haruma K (2009) Effect of irsogladine maleate on NSAID-induced reduction of gastric mucosal blood flow in anesthetized dogs. Digestion 79:73–78

    Article  PubMed  CAS  Google Scholar 

  15. Kyoi T, Noda K, Oka M, Ukai Y (2004) Irsogladine, an anti-ulcer drug, suppresses superoxide production by inhibiting phosphodiesterase type 4 in human neutrophils. Life Sci 76:71–83

    Article  PubMed  CAS  Google Scholar 

  16. Kyoi T, Oka M, Noda K, Ukai Y (2004) Phosphodiesterase inhibition by a gastroprotective agent irsogladine: preferential blockade of cAMP hydrolysis. Life Sci 75:1833–1842

    Article  PubMed  CAS  Google Scholar 

  17. Kamei K, Kubo Y, Kato N, Hatazawa R, Aamgase K, Takeuchi K (2008) Prophylactic effects of irsogladine maleate against indomethacine-induced small intestinal lesions in rats. Dig Dig Sci 53:2657–2666

    Article  CAS  Google Scholar 

  18. Fujita T, Kishimoto A, Shiba H, Hayashida K, Kajiya M, Uchida Y, Matsuda S, Takeda K, Ouhara K, Kawaguchi H, Abiko Y, Kurihara H (2010) Irsogladine maleate regulates neutrophil migration and E-cadherin expression in gingival epithelium stimulated by Aggregatibacter actinomycetemcomitans. Biochem Pharmacol 79(10):1496–1505

    Article  PubMed  CAS  Google Scholar 

  19. Macdonald TT (2003) A mouse model of intestinal fibrosis? Gastroenterology 125:1889–1892

    Article  PubMed  Google Scholar 

  20. McCormick BA (2008) Using Salmonella enterica serotype typhimurium to model intestinal fibrosis. Gastroenterology 134:872–875

    Article  PubMed  Google Scholar 

  21. Strober W, Fuss IJ, Blumberg RS (2002) The immunology of mucosal models of inflammation. Annu Rev Immunol 20:495–549

    Article  PubMed  CAS  Google Scholar 

  22. Melgar S, Karlsson A, Michaelsson E (2005) Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: correlation between symptoms. Am J Physiol Gastrointest Liver Physiol 288:G1328–G1338

    Article  PubMed  CAS  Google Scholar 

  23. Suzuki K, Sun X, Nagata M, Kawase T, Yamaguchi H, Sukumaran V, Kawauchi Y, Kawachi H, Nishino T, Watanabe K, Yoneyama H, Asakura H (2011) Analysis of intestinal fibrosis in chronic colitis in mice induced by dextran sulfate sodium. Pathol Int 61:228–238

    Article  PubMed  CAS  Google Scholar 

  24. Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R (1990) A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98:694–702

    PubMed  CAS  Google Scholar 

  25. Dielman LA, Ridwan BU, Tennyson GS, Beagley KW, Bucy RP, Elson CO (1994) Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterology 107:1643–1652

    Google Scholar 

  26. Sun X, Suzuki K, Nagata M, Kawauchi Y, Yano M, Ohkoshi S, Matsuda Y, Kawachi H, Watanabe K, Asakura H, Aoyagi Y (2010) Rectal administration of tranilast ameliorated acute colitis in mice through increased expression of heme oxygenase-1. Pathol Int 60:93–101

    Article  PubMed  CAS  Google Scholar 

  27. Vallance BA, Gunawan MI, Hewlett B, Bercik P, Van Kampen C, Galeazzi F, Sime PJ, Gauldie J, Collins SM (2005) TGF-α1 gene transfer to the mouse colon leads to intestinal fibrosis. Am J Physiol Gastrointest Liver Physiol 289:G116–G128

    Article  PubMed  CAS  Google Scholar 

  28. Rieder F, Brenmoehl J, Leeb S, Scholmerich J, Rogler G (2007) Wound healing and fibrosis in intestinal disease. Gut 56:130–139

    Article  PubMed  CAS  Google Scholar 

  29. Macdonald TT (2003) A mouse model of intestinal fibrosis? Gastroenterology 125:1889–1892

    Article  PubMed  Google Scholar 

  30. McCormick BA (2008) Using Salmonella enterica serotype typhimurium to model intestinal fibrosis. Gastroenterology 134:872–875

    Article  PubMed  Google Scholar 

  31. Graham MF (1995) Pathogenesis of intestinal strictures in Crohn’s disease: an update. Inflamm Bowel Dis 1:220–227

    PubMed  CAS  Google Scholar 

  32. Ueda F, Aratani S, Mimura K, Kimura K, Nomura A, Enomoto H (1984) Effect of 2,4-diamino-6-(2,5-dichlorophenyl)-s-triazine maleate (MN-1695) on gastric mucosal damage induced by various necrotizing agents in rats. Arzneim-Forsch 34:478–484

    CAS  Google Scholar 

  33. Ueda F, Ban K, Ishima T (1995) Irsogladine activates gap-junctional intercellular communication through M1 muscarinic acetylcholine receptor. J Pharmacol Exp Ther 274:815–819

    PubMed  CAS  Google Scholar 

  34. Hara K, Ueda F (1996) Effect of irsogladine maleate on indomethacin-induced intestinal ulcers and trinitrobenzene sulfonic acidinduced colonic ulcers in rats. Jpn Pharmacol Ther 24:2143–2149

    CAS  Google Scholar 

  35. Dieleman LA, Palmen MJ, Akol H, Bloemena E, Peña AS, Meuwissen SG, Van Rees EP (1998) Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin Exp Immunol 114:385–391

    Article  PubMed  CAS  Google Scholar 

  36. Motomura Y, Khan WI, El-Sharkawy RT, Verma-Gandhu M, Verdu EF, Gauldie J, Collins SM (2006) Induction of a fibrogenic response in mouse colon by overexpression of monocyte chemoattractant protein 1. Gut 55:662–670

    Article  PubMed  CAS  Google Scholar 

  37. Von Lampe B, Barthel B, Coupland SE, Riecken EO, Rosewicz S (2000) Differential expression of matrix metalloproteinases and their tissue inhibitors in colon mucosa of patients with inflammatory bowel disease. Gut 47:63–73

    Article  Google Scholar 

  38. Martens MFWC, Huyben CMLC, Hendriks T (1992) Collagen synthesis in fibroblasts from human colon: regulatory aspects and differences with skin fibroblasts. Gut 33:1664–1670

    Article  PubMed  CAS  Google Scholar 

  39. Pucilowska JB, Williams KL, Lund PK (2000) Fibrogenesis IV. Fibrosis and inflammatory bowel disease: cellular mediators and animal models. Am J Physiol Gastrointest Liver Physiol 279:G653–G659

    CAS  Google Scholar 

  40. Tomasek JJ (2002) Myofibroblasts and mechano-regulation of connective tissue remodeling. Nat Rev Mol Cell Biol 3:349–363

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Suzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, H., Suzuki, K., Nagata, M. et al. Irsogladine maleate ameliorates inflammation and fibrosis in mice with chronic colitis induced by dextran sulfate sodium. Med Mol Morphol 45, 140–151 (2012). https://doi.org/10.1007/s00795-011-0550-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-011-0550-7

Key words

Navigation